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Quasiparticle structure in the vicinity of the Heisenberg model in one and higher dimensions
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We study quasiparticle structure in the vicinity of the Heisenberg model. At first, we focus on the model in
one dimension and show how solitonic quasiparti¢kesd their bound statgemerge. Further we discuss its
anlaog in higher dimensions. Related to this subject, numerical data are presented and a discussion is given for
the quasiparticles in the two-dimensional Hubbard model at half filling on a triangular-type lattice.
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I. INTRODUCTION be negative, and focus is on the secEx0. In the follow-
It is a fundamental issue in modern condensed mattei"d: We limit ourselves to the properties at zero temperature.

. : . o In the uniform casép=J,/J;=1) andA=1, it reduces to
physics to elucidate the fate of quasipartiqliéshey are well . 2'-1 ; S -
s ; the Heisenberg model. Moreover, as discussed in Ref. 3, it is
defined, when the system approaches to the Mott insulator:. transfer matrix of thal=2 Ashkin-Teller model. When

In other words, how the quasiparticles are reconstructed an =1, the antiferromagnetic correlation decays algebraically

the “Fermi surface” collapses in the passage to the Mott Nfor 0<A<1.Butitis generically short-ranged away from it
sulator. There are several ways to get there. For exampl

; B+ 1, 0<A).
when the temperature is lowered, one can approach to it i A ’| ina th Wi f ; hi
the two-dimensional2D) Hubbard model at half filling on a pplying the Jordan-Wigner transformation, this quantum

. ; . . ; spin model is mapped into a fermionic model
square lattice. In this model, anisotropic suppression of the

charge excitation has been discovered recértiyhere the  H= >, —t,(f/fiq+ L )+ Vi(f1f, - 12 (f] 1 f .1 - 1/2)
temperature is in the intermediate regime and the antiferro-  i€odd

magnetic correlation is short ranged. The result has been S (i, + 1)

confirmed both in the strong-couplihgand the weak- o A e

coupling regior?. It imposes a severe constraint on possible i :

quasiparticle structure near the 2D Mott insulator. +Vo(fify = 12)(fiy1fisg = 1/2), 2

Related to the above subject, it would be valuable to purynerefl/f, creates/annihilates a spinless fermion at the site

sue quasiparticle structure in the vicinity of the Heisenberg TheVy(, denotes repulsive interaction between the fermi-
model(a low-energy model of the Mott insulagoiOur focus ¢ \hich we set to be positive. The total fermion nuniser
is on the case when the antiferromagnetic correlation is SURg get tg be half filledN=L/2), and the boundary condition

pressed. In the beginning, we shall study the model in ong; antineriodic whenN is oddeven. The relation between
dimension and reveal the quasiparticle structure. It is closely,e parameters it,/t,=V,/V,=8 and V,/t;=V,/t,=2A. In

related to a basic moded=2 Ashkin-Teller classical statis- the uniform caséB=1) and O<A <1, the system belongs to
tical model? and it is important to shed light on the quasi- the universality class of the Tomonaga-Luttinger liquid and
particle structure. This problem is also discussed in a morghe physical degree of freedom can be represented in terms
recent context, e.g., in Ref. 4. Further we shall discuss itef a free real boson in the continuum limit. On the other
anlaogue in higher dimensions. Finally, related to this sujecthand, with a sufficiently strong interactigd > 1), crystalli-
numerical data are presented and a discussion is given for theation of the fermions occurs with 2, symmetry breaking
quasiparticles in the 2D Hubbard model at half-filling on aand it can be identified with the Mott insulator. In the fol-

triangular-type lattice. lowing, we also use this kind of “fermionic” terminology
Il IN ONE DIMENSION Enl\élg(tetl insulator,” etc) even in the context of quantum spin
A. Model, continuum limit, and the quasiparticle structure Now let us derive a continuum model forsQA<1. The

starting point is the uniform casg=1. It has been estab-
lished that, apart from themarginally) irrelevant operators,
the low-energy degree of freedom can be represented in

Our model is defined on a chain with its lendthand the
Hamiltonian is

H= > -23(SS,,+9Y,, +ASS,,) terms of a free real boso¢ with its Lagrangian density
i€odd ) } . 2
+ 3 2SS+ rASS), () £=gHadr- (e8] ®

iSeven where the velocity is set equal to 1 agdis “compactified”

where periodic boundary condition is imposégy, is setto  as ¢~¢+27R (R=1/V27 at A=1 and 1AN4w<R
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FIG. 1. Excitation spectrum atl;=-1, J,=-0.3, A=0.6, k
L=12,16,20,24. FIG. 3. Excitation spectrum at);=-1, J,=-0.3, A=6,

L=12,16,20,24.

<1/\2m when OsA< 1). And ¢ is the “dual” boson. In this

language, the staggered parts of the spin operators are e¢@P” atA=0 and we say that the system belongs to the “band
pressed as insulator.” To summarize, the Lagrangian density becomes

. the Sine-Gordon mode$
~ A(=1)] ht
S~A-1 cos( R)

1
L= 5[(8@)2 ~ (3x$)*] + g1 cog ¢IR), (4)
and

§ ~C(- 1)l expi2mRe), where we limit ourselves to the region near the uniform case
with 0sA<1.

whereA, C are nonuniversal constants. Away from the uni- o ah4ve continuum model is integrable and exact data

form case(8# 1), the perturbation(~1)'S;-S;;; breaks the 46 yailabld® The basic quasiparticles are a soliton of the

translational symmetry by single lattice spaciig—¢  poson field and its counterpagntisoliton). The soliton has a

+7R) and it should generate a relevant term (@R). It mass(energy gap M,. Moreover there exists a family of
causes a gap which is adiabatically connected to the “band
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FIG. 2. Excitation spectrum atl;=-1; J,=-0.3, A=1, L=12,16,20. The charge is ordered. The ground state is twofold
L=12,16,20,24. degenerate in the thermodynamic limit.
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bound state of the soliton-antisoliton. The “lightest” one hasexcitations play a crucial role. The branch in the excitation

a mass ™, sin 7/ (167R*-2)], wh_ich is Mg at the SWY2)  spectrum corresponds to a bound state of the soliton-

symmetric pointtA=1 andR=1/v2). The low-lying neu- antisoliton, and the continuum corresponds to a scattering

tral excitation(which does not change the total fermion num- state of them.

ben consists of two elements$l) the branchbound state of There are some proposals on solitogtimpologica) exci-

the soliton-antisoliton e,(k) and(2) the continuum(scatter-  tations in quantum spin models in higher dimensi®m3.

ing state of the soliton-antisolitgnvhose lower edge is rep- However, when the ground state is antiferromagnetically or-

resented by that ofe.(k)=2[e(k-q)+e(q)]. Here e,(k)  dered, a crossover should occur toward @@) nonlinearo

shows a different dispersion thatk)[ e,(k) # e(k)]. Thenthe  model in(2 + 1)-dimensions in the long-wavelength and low-

structure _of the continuum clearly shows the existence ognergy limit, as has been well established in the 2D Heisen-

quasiparticle other than the bound state. berg model on a square latti€2On the other hand, it is

recently suggested that there exists the Mott insulator with-

out any long-range orddin the quantum spin modéland

Iso in the Hubbard mod®). In this section, we want to

iscuss a possible scenario for the quasiparticle dynamics in

such a phase, based on an analogy with one dimension.
Let us focus on the 2D antiferromagnetic quantum spin

B. Comparison with numerics

Let us discuss quasiparticle structure in the above lattic
model, based on our numerical data. We have diagonalize
the finite-size Hamiltonian numerically through the Lanczos
method up td_=24 in the subspace with a fixed momentum
k. We show figures foi3=0.3 as a typical examplé-igs.

1-4). The excitation spectrui is obtained for the low-lying Medel

excitations as a function of momentukn As seen in the

Figs. 1 and 2(they correspond to the discussion in the H= 2 S S+ X2 kS-S 5
continuum limiy, the excitation spectrum consists of the (keA (kB

branch and continuum. Genereally speaking, “resiudal” intery, .o \ve set the model so that it can be deformed continu-
action is irrelevant in the continuum. In other words, the

lower edge of the continuum should be represented by that usly into the Heisenbgrg model on a square Iattic_e by tuning
e(K) ~ S Je(k-q)+e(q)]. Actually, in the continuum limit A andJg. Further, we limit ourselves to the case without any
tﬁis relat(}on becomes exact ’ " long-range order. A possible example of this type of model

Further, let us discuss the mass ratio. It is a ratio betweeH‘?is been d'SCUS.SEd. n Ref._ 14, .Wh'Ch is defined on a
the gap for the branch and the continuum. In the case witifiangular-type lattice in two dimensions. _ ,
SU(2) symmetry, it is 2.0 in the therodynamic limit for Here_weagsumethat a fermionic soliton with §p|n-1/2 is
$=0.3 andA=1(see Fig. 2 On the other hand, it is fragile Well-defined in the above model and the continuum corre-
to the SW2)-breaking perturbation. Actually it is 1.5 for Sponds to a scattering state of the soliton-antisoliton. Then
B=0.3 andA=0.6(see Fig. 1. And it decreases toward 1, as We introduce the fermioff, which represents the soliton on
one comes close tA=+0. Then we consider that the con- a lattice. In order to describe the dynamics of them, the ef-
tinuum consists of a scattering state of a quasipartiatel  fective Hamiltonian on a lattice is set to be
hole) whose dispersion is generally independent of that of

the quasiparticle for the branch. Actually, this is the picture H= > (ff & f,+fl 2,
established in the Sine-Gordon model. (I,mea
Now we have confirmed the quasiparticle structure for
N 2 (1 e+ 1), ®)

this model and let us discuss a passage to the Mott insulator.
We set the system away from the uniform case and it belongs
to the band insulator with weak interactigamall A), as wheretﬁ;b)/hﬁ;bﬂ:exq2wia,m), a,=-ay, and the effective
discussed above. For suffciently strong interactiangeA),  “flux” is defined by=a,,, where the summation is over each
it is natural to expect a charge orderigigott insulato). It cycle(see, e.g., Ref. 11 for the “derivation'Here the filling
implies that the system shows a transition from the bands set to be half filled v=1/2) anday, is introduced so that
insulator to the Mott insulator, which is driven by the inter- 4 js 1/2 around every elementary plaguettor example,
action. In fact, as seen in Figs. 1-3, the gap decreases Wiffj the case of triangular-type lattice in two dimensions,
increasingA and finally the lower edge of the continuum ,—1/2 perplaquette impliesp=1/4 pertriangle) It is to be
touches at the ground statd=A). WhenA> A, itleads 10 noted that we damot assume that the “flux phase” is long-
twofold degenerate ground states in the thermodynamic limitange ordered. But we only focus on how to describe the
and a finite gap exists above(gee Fig. 4. We assign it to  continuum and the spectrum below it is beyond the scope.
the Z, symmetry breaking. Actually we confirmed that the Now, to be explicit, we set the geometry to be triangular-type

(I,myeb

ground state is adiabatically connected to the cAsel, iy two dimensions. It is constructed by deforming a square
where exact results from the Bethe ansatz tell us thaZhe |attice. Set the hopping in th&y) direction[(1,0) and(0,1)]
symmetry does break. to bet. Then the triangular lattice is constructed by adding

the next nearest-neighbor hoppitigin the direction(1, 1).
The energy spectrum of this model is “anisotropic” in

A. In the vicinity of the 2D Heisenberg model the k space, which ise.(k)= i[A(k)2+|B(k)|2]1’2 with

In the above, we have discussed quasiparticle structure iA(k)=2tcodk,),  B(k)=2tcogk,)+2it'cogk,+k,)  and
the vicinity of the 1D Heisenberg model, where solitonic (k¢ k,) €[0,7) X[0,27). Remarkably it has a small gap

Ill. ANALOG IN HIGHER DIMENSIONS
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around (7/2,7/2) which is in contrast with a large gap
around(ky, k) =(7,0),(0,m).

Then the lower edge of the continuum should be repre-
sented by that ofe.(k) ~Z[e,(k—q)+e€.(q)]. Moreover,
there can exist bound states as in the case in 1D. The scat-
tering and bound states are basically independent of each
other and both of them can appear in the low-energy regime
and become overlapped. Related to our discussion in one
dimension, a comment is in order. In the model discussed
above, there can exist a “branch” below the continuum in the
energy spectrum. It is conventional to apply the so-called
magnon picture in such a case. But it is not always so, as has
been confirmed in the case of one dimension.

FIG. 5. k-resolved charge compressibility(k) at t’/t=0.5,
. U/t=4 for [0,7) X[0,m). In the absence of interactiaity/t=0),
B. Extension to the 2D Hubbard model the x(k) on k+ky= is constant in this window. The result shows

In this section, based on the above scenario, we shall an#?at finite interaction makes the system compressible ar¢uha,

lyze data on the 2D Hubbard model at half fillifig)=1: w/2) more than(k, ky)=(,0),(0,m).
—_ AP T . . . _
H=- > tAC;Cror > t5CjCio is more compressible than others in the presence of interac-
(eAT (ilEB,o tion. The results show that finite interaction makes the sys-
" UE (ng = 1/2(my, - 1/2), @) tem compressible aroundw/2,7/2) more than (k,,k)
j

=(,0),(0,7). By varyingt’'/t, we confirmed that the ef-
T - ) . ) fects are not suppressed against the disordering of the anti-
where ¢;/c; create?/annlh!lates a fermion with spin-1/2 atferromagnetic order in the ground state. This is what we
the sitei andn;,=c;,Ci,. Since this reduces to the 2D anti- gynect from the scenario in the previous subsection, as seen
ferromagnetic quantum spin model in the latgeimit, we i, the energy dispersion of the quasiparticisse also the
shall apply the scenario in the previous subsection. See, e.Gjiscussion in Ref. 1L This kind of anisotropic effects due to
Ref. 11 which shares the picture with us. What we aim at inneraction is in contrast with, for example, the results in
this paper is to offer thefirst (so far as we knoWw jnfinite dimension® and we consider that it is important in
approximation-free results to support that picture. The geomyse|f. \We also studied the temperature effects in a systematic
etry is set to be triangular type in two dimensions. It is con-ay As temperature is raised, the charge compressibility be-
structed by deforming the square-lattice model as describegymes enhanced and the anisotropy is washed out. In other
in the previous subsection. It is to be noted that antiferroy,qrqs, the anisotropoic behavior is a manifestation of the
magnetic correlation is suppressed in this model down tQ,gntrivial low-energy physics. Although it needs further

sufficiently low temperaturgor zero temperatuye as dis-  gydy to identify the origin, we consider that the above qua-
cussed in Ref. 1%see also Refs. 16—20 for previous StUd'essiparticle picture is one of the candidates.

on this mode).
If the quasiparticle picture in the previous subsection is

realized in this model, the anisotropic dispersion should give IV. SUMMARY AND DISCUSSION
drastic effects in thé&-dependent observables, as we have ) ) o )
discussed. Here we shall focus on tkeresolved charge In this paper, we have studied quasiparticle structure in

compressibility «(k)=d(n(k))/du where (n(k))=(c] cx.) the vicinity of the Heisenberg model. In one dimension, we
and u is the chemical potentid? It has been confirmed in have confirmed solitonic quasiparticles in the model. Further,
Ref. 1 that this observable tells us a fine structure of thdVe discussed its analog in higher dimensions. To be concrete,
quasiparticles. we proposed several consequences from solitonic excitations
Then, applying the finite temperature auxiliary-field quan-" tWO. dimensions. In particular, it should lead to “aniso-
tum Monte Carlo method:23we have obtained(k) (see tropy” in thek space. In that context, we nu_merlcally studied
Fig. 5. In the data, we sdtto be unit energy scaké=1) and k-resolved charge compressibiligfk) and discussed a sce-
U/t=4. The system size is 2212 and the slice size in nario for the quasiparticles in the 2D Hubbard model at half

imaginary time isA7=0.1/&. We performed 5000 Monte filling on atrlangular-typ_e !attlce._ .

Carlo sweeps in order to reach a thermal equilibrium fol- For further progress, it Is cruqal to collept blas-fr_ee data

lowed by 10 000 sweeps for the measurement. The temper n the energy spectrum, dynamical correlation functllon, etc.,

ture is set to bel=0 %~J~t2/U<U and we have con- & rough approxmatlon—free.approa_lch. It'should clarify when

firmed that the charge compressibility is strongly suppresseH1e solitons becomeeal in higher dimensions.

due to interaction and shows a thermally activated behavior.
Now let us focus on the link+k, = in [0,7) X [0, ).

In the absence of interactigh)/t=0), the (k) on this line is

constant in this model. The question is which part on this line We are grateful to S. Ryu for discussions.
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