
Quasiparticle structure in the vicinity of the Heisenberg model in one and higher dimensions
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We study quasiparticle structure in the vicinity of the Heisenberg model. At first, we focus on the model in
one dimension and show how solitonic quasiparticles(and their bound states) emerge. Further we discuss its
anlaog in higher dimensions. Related to this subject, numerical data are presented and a discussion is given for
the quasiparticles in the two-dimensional Hubbard model at half filling on a triangular-type lattice.

DOI: 10.1103/PhysRevB.70.245101 PACS number(s): 72.80.Rj, 73.20.At

I. INTRODUCTION

It is a fundamental issue in modern condensed matter
physics to elucidate the fate of quasiparticles(if they are well
defined), when the system approaches to the Mott insulator.
In other words, how the quasiparticles are reconstructed and
the “Fermi surface” collapses in the passage to the Mott in-
sulator. There are several ways to get there. For example,
when the temperature is lowered, one can approach to it in
the two-dimensional(2D) Hubbard model at half filling on a
square lattice. In this model, anisotropic suppression of the
charge excitation has been discovered recently,1,2 where the
temperature is in the intermediate regime and the antiferro-
magnetic correlation is short ranged. The result has been
confirmed both in the strong-coupling1 and the weak-
coupling region.2 It imposes a severe constraint on possible
quasiparticle structure near the 2D Mott insulator.

Related to the above subject, it would be valuable to pur-
sue quasiparticle structure in the vicinity of the Heisenberg
model(a low-energy model of the Mott insulator). Our focus
is on the case when the antiferromagnetic correlation is sup-
pressed. In the beginning, we shall study the model in one
dimension and reveal the quasiparticle structure. It is closely
related to a basic model,d=2 Ashkin-Teller classical statis-
tical model,3 and it is important to shed light on the quasi-
particle structure. This problem is also discussed in a more
recent context, e.g., in Ref. 4. Further we shall discuss its
anlaogue in higher dimensions. Finally, related to this suject,
numerical data are presented and a discussion is given for the
quasiparticles in the 2D Hubbard model at half-filling on a
triangular-type lattice.

II. IN ONE DIMENSION

A. Model, continuum limit, and the quasiparticle structure

Our model is defined on a chain with its lengthL and the
Hamiltonian is

H = o
i[odd

− 2J1sSi
xSi+1

x + Si
ySi+1

y + DSi
zSi+1

z d

+ o
i[even

− 2J2sSi
xSi+1

x + Si
ySi+1

y + DSi
zSi+1

z d, s1d

where periodic boundary condition is imposed,J1s2d is set to

be negative, and focus is on the sectorSz=0. In the follow-
ing, we limit ourselves to the properties at zero temperature.

In the uniform casesb=J2/J1=1d andD=1, it reduces to
the Heisenberg model. Moreover, as discussed in Ref. 3, it is
a transfer matrix of thed=2 Ashkin-Teller model. When
b=1, the antiferromagnetic correlation decays algebraically
for 0øDø1. But it is generically short-ranged away from it
(bÞ1, 0øD).

Applying the Jordan-Wigner transformation, this quantum
spin model is mapped into a fermionic model

H = o
i[odd

− t1sf i
†f i+1 + f i+1

† f id + V1sf i
†f i − 1/2dsf i+1

† f i+1 − 1/2d

+ o
i[even

− t2sf i
†f i+1 + f i+1

† f id

+ V2sf i
†f i − 1/2dsf i+1

† f i+1 − 1/2d, s2d

where f i
†/ f i creates/annihilates a spinless fermion at the site

i. TheV1s2d denotes repulsive interaction between the fermi-
ons, which we set to be positive. The total fermion numberN
is set to be half filledsN=L /2d, and the boundary condition
is (anti)periodic whenN is odd(even). The relation between
the parameters ist2/ t1=V2/V1=b and V1/ t1=V2/ t2=2D. In
the uniform case(b=1) and 0øDø1, the system belongs to
the universality class of the Tomonaga-Luttinger liquid and
the physical degree of freedom can be represented in terms
of a free real boson in the continuum limit. On the other
hand, with a sufficiently strong interactionsD.1d, crystalli-
zation of the fermions occurs with aZ2 symmetry breaking
and it can be identified with the Mott insulator. In the fol-
lowing, we also use this kind of “fermionic” terminology
(“Mott insulator,” etc.) even in the context of quantum spin
model.

Now let us derive a continuum model for 0øDø1. The
starting point is the uniform caseb=1. It has been estab-
lished that, apart from the(marginally) irrelevant operators,
the low-energy degree of freedom can be represented in
terms of a free real bosonf with its Lagrangian density

L =
1

2
fs]tfd2 − s]xfd2g, s3d

where the velocity is set equal to 1 andf is “compactified”
as f,f+2pR (R=1/Î2p at D=1 and 1/Î4pøR
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ø1/Î2p when 0øDø1). And f is the “dual” boson. In this
language, the staggered parts of the spin operators are ex-
pressed as

Sj
z , As− 1d j cosSf

R
D

and

Sj
− , Cs− 1d j expsi2pRfd,

whereA, C are nonuniversal constants. Away from the uni-
form casesbÞ1d, the perturbations−1diSi ·Si+1 breaks the
translational symmetry by single lattice spacingsf→f
+pRd and it should generate a relevant term cossf /Rd. It
causes a gap which is adiabatically connected to the “band

gap” atD=0 and we say that the system belongs to the “band
insulator.” To summarize, the Lagrangian density becomes
the Sine-Gordon model5,6

L =
1

2
fs]tfd2 − s]xfd2g + g1 cossf/Rd, s4d

where we limit ourselves to the region near the uniform case
with 0øDø1.

The above continuum model is integrable and exact data
are available.7,8 The basic quasiparticles are a soliton of the
boson field and its counterpart(antisoliton). The soliton has a
mass(energy gap) M0. Moreover there exists a family of

FIG. 1. Excitation spectrum atJ1=−1, J2=−0.3, D=0.6,
L=12,16,20,24.

FIG. 2. Excitation spectrum atJ1=−1; J2=−0.3, D=1,
L=12,16,20,24.

FIG. 3. Excitation spectrum atJ1=−1, J2=−0.3, D=6,
L=12,16,20,24.

FIG. 4. Excitation spectrum atJ1=−1, J2=−0.3, D=10,
L=12,16,20. The charge is ordered. The ground state is twofold
degenerate in the thermodynamic limit.
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bound state of the soliton-antisoliton. The “lightest” one has
a mass 2M0 sinfp / s16pR2−2dg, which is M0 at the SU(2)
symmetric point(D=1 andR=1/Î2p). The low-lying neu-
tral excitation(which does not change the total fermion num-
ber) consists of two elements:(1) the branch(bound state of
the soliton-antisoliton) ebskd and (2) the continuum(scatter-
ing state of the soliton-antisoliton) whose lower edge is rep-
resented by that ofecskd=oqfesk−qd+esqdg. Here ebskd
shows a different dispersion thaneskdfebskdÞeskdg. Then the
structure of the continuum clearly shows the existence of
quasiparticle other than the bound state.

B. Comparison with numerics

Let us discuss quasiparticle structure in the above lattice
model, based on our numerical data. We have diagonalized
the finite-size Hamiltonian numerically through the Lanczos
method up toL=24 in the subspace with a fixed momentum
k. We show figures forb=0.3 as a typical example(Figs.
1–4). The excitation spectrumE is obtained for the low-lying
excitations as a function of momentumk. As seen in the
Figs. 1 and 2(they correspond to the discussion in the
continuum limit), the excitation spectrum consists of the
branch and continuum. Genereally speaking, “resiudal” inter-
action is irrelevant in the continuum. In other words, the
lower edge of the continuum should be represented by that of
ecskd,oqfesk−qd+esqdg. Actually, in the continuum limit,
this relation becomes exact.

Further, let us discuss the mass ratio. It is a ratio between
the gap for the branch and the continuum. In the case with
SU(2) symmetry, it is 2.0 in the therodynamic limit for
b=0.3 andD=1 (see Fig. 2). On the other hand, it is fragile
to the SU(2)-breaking perturbation. Actually it is 1.5 for
b=0.3 andD=0.6 (see Fig. 1). And it decreases toward 1, as
one comes close toD= +0. Then we consider that the con-
tinuum consists of a scattering state of a quasiparticle(and
hole) whose dispersion is generally independent of that of
the quasiparticle for the branch. Actually, this is the picture
established in the Sine-Gordon model.

Now we have confirmed the quasiparticle structure for
this model and let us discuss a passage to the Mott insulator.
We set the system away from the uniform case and it belongs
to the band insulator with weak interaction(small D), as
discussed above. For suffciently strong interaction(largeD),
it is natural to expect a charge ordering(Mott insulator). It
implies that the system shows a transition from the band
insulator to the Mott insulator, which is driven by the inter-
action. In fact, as seen in Figs. 1–3, the gap decreases with
increasingD and finally the lower edge of the continuum
touches at the ground statesD=Dcd. WhenD.Dc, it leads to
twofold degenerate ground states in the thermodynamic limit
and a finite gap exists above it(see Fig. 4). We assign it to
the Z2 symmetry breaking. Actually we confirmed that the
ground state is adiabatically connected to the caseb=1,
where exact results from the Bethe ansatz tell us that theZ2
symmetry does break.

III. ANALOG IN HIGHER DIMENSIONS

A. In the vicinity of the 2D Heisenberg model

In the above, we have discussed quasiparticle structure in
the vicinity of the 1D Heisenberg model, where solitonic

excitations play a crucial role. The branch in the excitation
spectrum corresponds to a bound state of the soliton-
antisoliton, and the continuum corresponds to a scattering
state of them.

There are some proposals on solitonic(topological) exci-
tations in quantum spin models in higher dimensions.9–12

However, when the ground state is antiferromagnetically or-
dered, a crossover should occur toward theOs3d nonlinears
model ins2+1d-dimensions in the long-wavelength and low-
energy limit, as has been well established in the 2D Heisen-
berg model on a square lattice.13 On the other hand, it is
recently suggested that there exists the Mott insulator with-
out any long-range order(in the quantum spin model14 and
also in the Hubbard model15). In this section, we want to
discuss a possible scenario for the quasiparticle dynamics in
such a phase, based on an analogy with one dimension.

Let us focus on the 2D antiferromagnetic quantum spin
model

H = o
k j ,klPA

JASj ·Sk + o
k j ,klPB

JBSj ·Sk, s5d

where we set the model so that it can be deformed continu-
ously into the Heisenberg model on a square lattice by tuning
JA andJB. Further, we limit ourselves to the case without any
long-range order. A possible example of this type of model
has been discussed in Ref. 14, which is defined on a
triangular-type lattice in two dimensions.

Here weassumethat a fermionic soliton with spin-1/2 is
well-defined in the above model and the continuum corre-
sponds to a scattering state of the soliton-antisoliton. Then
we introduce the fermionf ls which represents the soliton on
a lattice. In order to describe the dynamics of them, the ef-
fective Hamiltonian on a lattice is set to be

H = o
kl,mlPa

sf ls
† tlm

a fms + fms
† tml

a f lsd

+ o
kl,mlPb

sf ls
† tlm

b fms + fms
† tml

b f lsd, s6d

where tlm
asbd / utlm

asbdu=exps2pialmd, alm=−aml, and the effective
“flux” is defined byoalm where the summation is over each
cycle (see, e.g., Ref. 11 for the “derivation”). Here the filling
is set to be half filledsn=1/2d andalm is introduced so that
f is 1/2 around every elementary plaquette.(For example,
in the case of triangular-type lattice in two dimensions,
f=1/2 perplaquette impliesf=1/4 pertriangle.) It is to be
noted that we donot assume that the “flux phase” is long-
range ordered. But we only focus on how to describe the
continuum and the spectrum below it is beyond the scope.
Now, to be explicit, we set the geometry to be triangular-type
in two dimensions. It is constructed by deforming a square
lattice. Set the hopping in thexsyd direction[(1,0) and(0,1)]
to be t. Then the triangular lattice is constructed by adding
the next nearest-neighbor hoppingt8 in the directions1,1d.
The energy spectrum of this model is “anisotropic” in
the k space, which ise±skd= ± fAskd2+ uBskdu2g1/2 with
Askd=2tcosskxd, Bskd=2tcosskyd+2it8cosskx+kyd and
skx,kyd[ f0,pd3 f0,2pd. Remarkably it has a small gap
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around sp /2 ,p /2d which is in contrast with a large gap
aroundskx,kyd=sp ,0d ,s0,pd.

Then the lower edge of the continuum should be repre-
sented by that ofecskd,oqfe+sk −qd+e+sqdg. Moreover,
there can exist bound states as in the case in 1D. The scat-
tering and bound states are basically independent of each
other and both of them can appear in the low-energy regime
and become overlapped. Related to our discussion in one
dimension, a comment is in order. In the model discussed
above, there can exist a “branch” below the continuum in the
energy spectrum. It is conventional to apply the so-called
magnon picture in such a case. But it is not always so, as has
been confirmed in the case of one dimension.

B. Extension to the 2D Hubbard model

In this section, based on the above scenario, we shall ana-
lyze data on the 2D Hubbard model at half fillingknjl=1:

H = − o
k j ,kl[A,s

tAcjs
† cks − o

k j ,kl[B,s
tBcjs

† cks

+ Uo
j

snj↑ − 1/2dsnj↓ − 1/2d, s7d

where ci
†/ci creates/annihilates a fermion with spin-1/2 at

the sitei and nis=cis
† cis. Since this reduces to the 2D anti-

ferromagnetic quantum spin model in the large-U limit, we
shall apply the scenario in the previous subsection. See, e.g.,
Ref. 11 which shares the picture with us. What we aim at in
this paper is to offer thefirst (so far as we know)
approximation-free results to support that picture. The geom-
etry is set to be triangular type in two dimensions. It is con-
structed by deforming the square-lattice model as described
in the previous subsection. It is to be noted that antiferro-
magnetic correlation is suppressed in this model down to
sufficiently low temperature(or zero temperature), as dis-
cussed in Ref. 15(see also Refs. 16–20 for previous studies
on this model).

If the quasiparticle picture in the previous subsection is
realized in this model, the anisotropic dispersion should give
drastic effects in thek-dependent observables, as we have
discussed. Here we shall focus on thek-resolved charge
compressibility kskd=dknskdl /dm where knskdl=kcks

† cksl
and m is the chemical potential.1,2 It has been confirmed in
Ref. 1 that this observable tells us a fine structure of the
quasiparticles.

Then, applying the finite temperature auxiliary-field quan-
tum Monte Carlo method,21–23 we have obtainedkskd (see
Fig. 5). In the data, we sett to be unit energy scalest=1d and
U / t=4. The system size is 12312 and the slice size in
imaginary time isDt=0.1/t. We performed 5000 Monte
Carlo sweeps in order to reach a thermal equilibrium fol-
lowed by 10 000 sweeps for the measurement. The tempera-
ture is set to beT=0.2t,J, t2/U!U and we have con-
firmed that the charge compressibility is strongly suppressed
due to interaction and shows a thermally activated behavior.

Now let us focus on the linekx+ky=p in f0,pd3 f0,pd.
In the absence of interactionsU / t=0d, thekskd on this line is
constant in this model. The question is which part on this line

is more compressible than others in the presence of interac-
tion. The results show that finite interaction makes the sys-
tem compressible aroundsp /2 ,p /2d more than skx,kyd
=sp ,0d ,s0,pd. By varying t8 / t, we confirmed that the ef-
fects are not suppressed against the disordering of the anti-
ferromagnetic order in the ground state. This is what we
expect from the scenario in the previous subsection, as seen
in the energy dispersion of the quasiparticles(see also the
discussion in Ref. 1). This kind of anisotropic effects due to
interaction is in contrast with, for example, the results in
infinite dimensions24 and we consider that it is important in
itself. We also studied the temperature effects in a systematic
way. As temperature is raised, the charge compressibility be-
comes enhanced and the anisotropy is washed out. In other
words, the anisotropoic behavior is a manifestation of the
nontrivial low-energy physics. Although it needs further
study to identify the origin, we consider that the above qua-
siparticle picture is one of the candidates.

IV. SUMMARY AND DISCUSSION

In this paper, we have studied quasiparticle structure in
the vicinity of the Heisenberg model. In one dimension, we
have confirmed solitonic quasiparticles in the model. Further,
we discussed its analog in higher dimensions. To be concrete,
we proposed several consequences from solitonic excitations
in two dimensions. In particular, it should lead to “aniso-
tropy” in thek space. In that context, we numerically studied
k-resolved charge compressibilitykskd and discussed a sce-
nario for the quasiparticles in the 2D Hubbard model at half
filling on a triangular-type lattice.

For further progress, it is crucial to collect bias-free data
on the energy spectrum, dynamical correlation function, etc.,
through approximation-free approach. It should clarify when
the solitons becomereal in higher dimensions.
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FIG. 5. k-resolved charge compressibilitykskd at t8 / t=0.5,
U / t=4 for f0,pd3 f0,pd. In the absence of interactionsU / t=0d,
the kskd on kx+ky=p is constant in this window. The result shows
that finite interaction makes the system compressible around(p /2,
p /2) more thanskx,kyd=sp ,0d ,s0,pd.
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