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Based on quantum Monte Carlo calculations, we shall discuss the regime where ferromagnetic correlation is
dominant in the two-dimensionalt-t8 Hubbard model at a finite temperature. In this model, ferromagnetism
competes with antiferromagnetism and we reveal how crossover occurs between them at a finite temperature by
the bias-free method. We shall investigate the data in the context of the so-called “low-density ferromag-
netism.” The weak-coupling result is also shown and the data are compared with the “Nagaoka
ferromagnetism.”
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I. INTRODUCTION

The Hubbard model is a basic model to study phenomena
due to correlation effects in the electron system, e.g., itiner-
ant ferromagnetism. Exact results have been accumulated in
one and infinite dimensions, but many problems are left to be
solved in other dimensions.1 Generally speaking, quantum
fluctuation is large in lower dimensions, which leads to many
fascinating properties. Therefore the two-dimensionals2Dd
Hubbard model is one of the central issues in modern con-
densed matter physics. In this paper, we discuss magnetic
properties in one of the prototypes, 2D Hubbard models on a
square lattice with the neareststd and next-nearest neighbor
st8d hopping, which we call “t-t8 Hubbard model” in this
paper. Our main focus is on the itinerant ferromagnetism.

Recently thet-t8 Hubbard model was studied with the
filling at the “Van-Hove density” and appearance of itinerant
ferromagnetism was suggested in the ground state at
t8 / t=0.47 sRef. 2d snote that it contrasts with a previous
conclusion in, e.g., Ref. 3d. We call it “low-density ferromag-
netism” in this paper.4,5 A variational study has also been
performed for a more extended parameter window in the
phase diagram.6 Superconducting properties have also been
studied.7 Further, quantum spin phase has been discovered at
half filling in Ref. 8. However, bias-free systematic data on
the global properties are left to be revealedsas a function of,
e.g., filling andt8 / td and it is what we want to study in this
paper.

Since the itinerant ferromagnetism is one of the long-
standing, classical problems in condensed matter physics
ssee, for example, Refs. 9–12d, it is crucial to shed light on
the magnetism in thet-t8 Hubbard model by a bias-free
method. In this paper, we reveal the magnetic properties in
the t-t8 Hubbard model from low- to over-doping, based on
an approximation-free method: finite-temperature auxiliary-
field quantum Monte CarlosAFQMCd.13–15 In some cases,
however, we have to reach the temperature regime with a
severe negative-sign problemssee, e.g., Ref. 16d for the
study of the itinerant ferromagnetism. In order to overcome
the difficulty, we employ an algorithm which has been pro-
posed recently, constrained path QMCsCPQMCd.17

II. MODEL

The t-t8 Hubbard model is described by the following
Hamiltonian on a square lattice with a periodic boundary
condition:

H = − t o
ki,jlPn.n.,s

scis
† cjs + H.c.d

+ t8 o
kk,llPn.n.n.,s

scks
† cls + H.c.d

+ Uo
i

sni↑ − 1/2dsni↓ − 1/2d − mo
i

ni , s1d

wherecis
† /cis creates/annihilates an electron at the sitei and

nis=cis
† cis. The tst8d denotes the nearestsnext-nearest neigh-

bord hopping amplitude andU the strength of the on-site
Coulomb interaction. Them is the chemical potential, which
controls the fillingn=Ne/V sNe is the electron number and
V is the site numberd and we also use a notationm̃=m
+U /2. In the following, we set botht and t8 to be positive
ssee also the discussion later which concerns the sign oft and
t8d.

III. WEAK-COUPLING APPROACH

In this section, we study thet-t8 Hubbard model through
the weak-coupling approach. In the beginning, let us study
the case of free fermion

H0 = − o
ki,jlPn.n.,s

tscis
† cjs + H.c.d

+ o
kk,llPn.n.n.,s

t8scks
† cls + H.c.d. s2d

Defining the Fourier transformation by
cjs=1/ÎLxLyok expsikjdc̄ks andk=skx,kyd sthe system size is
Lx3Lyd, we get

H0 = − o
k,s

2tscoskx + coskydc̄ks
† c̄ks

+ o
k,s

4t8 coskx coskyc̄ks
† c̄ks

= o
k,s

eskdc̄ks
† c̄ks. s3d
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The density of statessDoSd has a support off−4st− t8d ,4st
+ t8dg st8 / tø0.5d and shows a diverging behavior at the Van-
Hove energyssee Fig. 1d.

Based on the mean-field theory for the ferromagnetism, a
naive expectation is that, when the Fermi energy is set near
the Van-Hove energy, the ferromagnetic correlation is domi-
nant. But this picture does not hold even in the weak-
coupling approach especially near half-filling. Actually let us

show the weak-coupling results by the random phase ap-
proximationsRPAd. In the RPA, the magnetic susceptibility
xsqd is given by

xsqd = x0sqdf1 − Ux0sqdg−1 s4d

and

FIG. 1. DoS without interaction fort8 / t=0,0.3.

FIG. 2. Magnetic susceptibilityxsqd by the RPA st8 / t=0.2,
U / t=1, T/ t=0.3d on a 12312 lattice.

FIG. 3. Magnetic susceptibilityxsqd by the RPA st8 / t=0.4,
U / t=1, T/ t=0.3d on a 12312 lattice.

FIG. 4. t8 / t -T/ t phase diagram which shows the magnetic prop-
erty for the t-t8 Hubbard model on a 12312 lattice withU / t=4.
The Fermi energy is set at the Van-Hove energy of the free fermion.
It shows competition between ferromagnetismsFmd and antiferro-
magnetism sAFmd, as t8 / t and the temperaturesTd is varied.
FMsAFMd means that the system issantidferromagneticsliked re-
spectively ssee Sec. IV for the precise definition of this
terminologyd.
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x0sqd = −
1

V
o
k

f fēsk + qdg − f fēskdg
ēsk + qd − ēskd

, s5d

where the summation is overf0,2pd3 f0,2pd, ēskd=eskd
−sm+U /2d=eskd−m̃ and fsxd=1/fexpsbxd+1g sb=1/T and
T is the temperatured. The results are shown in Figs. 2 and 3
where the Fermi energy is at the Van-Hove energy. It tells
us that ferromagnetic correlation competes severely with
antiferromagneticlike one near half-fillingslow-doping re-
gimed in the t-t8 Hubbard model. But, far away from half-
filling sover-doping regimed, the results suggest that the fer-
romagnetic correlation dominates. As is well known,
however, the ferromagnetic correlation is overestimated
in the weak-coupling approach. Then, in order to get

approximation-free results, we shall apply the QMC method
in the next section.

IV. QMC RESULTS

In this section, based on the QMC technique, we show our
results on the magnetic properties for thet-t8 Hubbard
model. In order to discuss the magnetism, we adopt the spin
structure factor

Ssqd =
1

V
o
j ,k

expf− iqs j − kdgkSj
zSk

zl, s6d

where Si
z= 1

2sni↑−ni↓d and k¯l means the grand-canonical
ensemble average at a finite temperatureT.

In the beginning, we set the chemical potentialm to be at
the Van-Hove energy of the free fermion. Figure 4 shows
how the magnetic behavior changes as a function oft8 / t and
T/ t with the system size 12312 andU / t=4. Ferromagnetic
correlation emerges only in the low temperature region
aroundt8,0.5t. It is based on the extrapolated spin structure
factor for the Trotter decomposition in the imaginary time
axis sDt→0d from three data typically attDt=0.100, 0.050,
and 0.033.

In this paper, “ferromagnetic correlation is dominant”sor
simply “ferromagnetic”d means that the spin structure factor
Ssqd has a peak just atq=s0,0d fand “antiferromagneticlike”
means the peak isaroundq=sp ,pdg apart from the statistical
error in the QMC. Note that all of the correlation in this
paper is short ranged due to finite-temperature effects. Typi-
cal spin structure factor is shown in Figs. 5sad–5sdd, which
correspond to data pointssad–sdd in Fig. 4.

Next, away from the Van-Hove energy, we study how the
“ferromagnetic regime” extends as the fillingsnd andt8 / t are
varied at the temperatureT/ t=0.3 on a 12312 lattice. As
shown in Fig. 6, the ferromagnetic regime extends even

FIG. 5. Spin structure factorSsqd on a 12312 lattice with
U / t=4. The Fermi energy is at the Van-Hove energy:sad t8 / t=0.3,
T/ t=0.3, sbd t8 / t=0.5, T/ t=0.3, scd t8 / t=0.5, T/ t=0.6, and sdd
t8 / t=0.5,T/ t=0.7. In sad, there is a peak aroundq=sp ,pd santifer-
romagneticliked. In sbd, there is a peak atq=s0,0d sferromagneticd.
As the temperaturesTd is increasedffrom sbd to sddg, crossover
occurs from ferromagnetic to antiferromagneticlike correlation.

FIG. 6. n-t8 / t phase diagram which shows the magnetic prop-
erty for thet-t8 Hubbard model on a 12312 lattice withU / t=4 and
T/ t=0.3. Dashed line corresponds to the case when the Fermi en-
ergy is at the Van-Hove energy of the free system. The shaded
region corresponds to the parameters where ferromagnetic correla-
tion is dominant.
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away from the Van-Hove “line” on which the Fermi energy
is set at the Van-Hove energy of the free fermion. It is the
“low-density ferromagnetism” discussed in Ref. 2 and its
extension. We also variedT/ ts,0.3d and found that the fer-
romagnetic regime is robust and the phase diagram is the
same qualitatively, so far as we have studied. We also con-
firmed that the sign oft and t8 is irrelevant around the Van-
Hove line. Typical spin structure factorSsqd is shown in
Figs. 7sad–7scd, which correspond to data pointssad–scd in
Fig. 6. Further we revealed that the regime expands, when
U / t is increasedssee Figs. 8 and 9d. In the case when botht
and t8 is positive, the Nagaoka’s theorem holds and the

ground state is expected to be ferromagneticsor near to itd in
the vicinity of the half-filling.18 Therefore, based on the
present results, we conjecture that the ferromagnetic regime
finally connects to the “Nagaoka ferromagnetism” in the
strong-coupling regimeslarge U / td. It is difficult, however,
to study the regime by the present method due to numerical
instabilities and it is the beyond the scope of this paper.

Finally, let us comment on the negative sign problem. In
our data, there is no serious problem so far as when
T/ tù0.3 is satisfied. Below it, however, the AFQMC does
not always work well due to the negative sign problem. In
order to overcome it, we have applied the CPQMC technique
and got data forT/ tø0.3 ssee also the Appendixd.17

V. SUMMARY AND DISCUSSION

To summarize, based on the bias-free, QMC technique,
we have found the regime where the ferromgnetic correlation
is dominant in the 2Dt-t8 Hubbard model at a finite tempera-
ture. In this model, we revealed how crossover occurs be-
tween ferromagnetism and antiferromagnetism at a finite
temperature. We investigated the data in the context of the
so-called low-density ferromagnetism. The weak-coupling
result is also shown and the data are compared with the Na-
gaoka ferromagnetism.

The ferromagnetic regime expands in the strong-coupling
region slargeU / td. Therefore it is an interesting open prob-
lem to study the strong-coupling region in more details and
elucidates the connection with the Nagaoka
ferromagnetism.18 Moreover the correlation effects should be
relevant near the ferromagnetic criticality. Then a quasiparti-
cle structure might emerge in the vicinity of the Mott
insulator.19,20

FIG. 7. Spin structure factorSsqd on a 12312 lattice with
t8 / t=0.5, U / t=4, and T/ t=0.3. sad n=0.02, sbd n=0.54, scd
n=1.10. Crossover from ferromagnetic to antiferromagneticlike
correlation is observed, when we approach the half fillingn=1
ffrom sad to scdg.

FIG. 8. The same as Fig. 6 withU / t=2.

FIG. 9. The same as Fig. 6 withU / t=5.

FIG. 10. Spin structure factorSsqd by the AFQMC. The system
size is 10310, t8 / t=0.5, U / t=4, andT/ t=0.2.
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In order to compare data with thet-t8 Hubbard model, we
have also studied the 2D Hubbard model on a triangular
lattice by the AFQMC technique. In that model, we set the
chemical potential near the Van-Hove energy of the free sys-
tem sas in the t-t8 Hubbard modeld. We expect the same
physics as thet-t8 Hubbard model discussed in this paper.
However, no evidence for the ferromagnetism in that model
is found, so far as can we study. But the strong-coupling
regime on a triangular lattice is beyond our reach.

Further, it is challenging to shed light on the lower tem-
perature regime than we studied. As the temperature is low-
ered, the tendency toward many kinds of order should appear
and they may compete severely. There it is possible that
superconducting correlation becomes dominant.

APPENDIX: CPQMC RESULTS

In this appendix we demonstrate the efficiency of the
CPMC method. Note that we verified the validity of the
CPQMC technique in comparison with the AFQMC method,
in the region where both methods are available.

When t8 / t=0.5 andT/ t=0.2 on a 10310 lattice for ex-
ample, the negative sign problem is so severe that the statis-
tical error washes out the fine structure of the magnetic prop-
ertiessFig. 10d. By applying CPQMC to this, we found that
the data is recoveredsFig. 11d and the result is consistent. It
is to be noted, however, that the lower regionse.g.,
T/ t=0.1d can not be reached even through the CPMC
method due to notoriously severe negative-sign problem.
Since it is possible that superconducting correlation wins
there, it is interesting to explore the region.
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