
Capabiilty-based Egress Network Access

Control by using DNS Server

Shinichi Suzuki a, Yasushi Shinjo a,∗,1, Toshio Hirotsu b,1,
Kozo Itano a,1, Kazuhiko Kato a,1

aDepartment of Computer Science, University of Tsukuba, Tsukuba, Ibaraki,
305-8577, Japan

bDepartment of Information and Computer Sciences, Toyohashi University of
Technology, Toyohashi, Aichi, 441-8580, Japan

Abstract

In conventional egress network access control (NAC) based on access control lists
(ACLs), modifying the ACLs is a heavy task for administrators. To enable configu-
ration without a large amount of administrators’ effort, we introduce capabilities to
egress NAC. In our method, a user can transfer his/her access rights (capabilities)
to other persons without asking administrators. To realize our method, we use a
DNS cache server and a router. A resolver of the client sends the user name, domain
name, and service name to the DNS cache server. The DNS server issues capabilities
according to a policy and sends them to the client. The client puts these capabilities
into the IP options of packets and sends them to the router. The router verifies the
capabilities, and determines whether to pass or block the packets. In this paper,
we describe the design and implementation of our method in detail. Experimental
results show that our method does not reduce the router’s performance.

Key words: Access control, Capabilities, Network security, Egress filters, DNS

1 Introduction

Access control is one of the most important issues in computer security. In
recent years, it has been performed not only at end hosts but also at inter-

∗ Corresponding author.
Email address: yas@cs.tsukuba.ac.jp (Yasushi Shinjo).

1 CREST, Japan Science and Technology Agency (JST)

Preprint submitted to Elsevier Science 27 January 2006

mediate routers and proxies. We call the access control that is enforced by
network administrators at routers or proxies network access control (NAC).

NAC can be classified into two types: ingress NAC and egress NAC. Ingress
NAC protects internal servers from external attackers and intruders. Egress
NAC prevents internal users accessing undesired or dangerous external servers.
Egress NAC is increasingly attracting the attention of educational organiza-
tions, government organizations, and companies.

Most implementations of conventional egress NAC use filters in routers or
proxies. In such egress filters, network administrators describe a filtering policy
based on access control lists (ACLs). A typical ACL is a list of filtering rules.
Each rule consists of a user name, domain name, service name, and access
permission or refusal. We call such egress NAC ACL-based egress NAC.

In ACL-based egress NAC, only network administrators can modify ACLs.
Changing access rights needs to modify the ACLs, so normal users cannot
transfer their access rights to other persons. For example, consider a section
chief and a subordinate working together on a project in a company. The chief
has the right to access an external site, but the subordinate does not. The chief
can show the subordinate the external site by using his/her own computer.
If the chief is willing to allow the subordinate to access the external site
temporarily, he/she must request a network administrator to modify the ACL.
The network administrator must modify the ACL to satisfy the request and
restore it after the temporary access ends. Changing such sensitive information
increases the workload of the network administrator.

To reduce the network administrator’s burden, we introduce capabilities into
egress NAC[1]. We call such an egress NAC capability-based egress NAC. In our
method, a capability is a binary value that acts as an access key allowing the
holder to access a specified server. Capabilities can be transferred by various
methods, such as e-mail, files, and instant messages. Using capabilities has the
advantage that a user can transfer his/her own access rights to other users. In
capability-based egress NAC, a network administrator is freed from having to
change ACLs.

In our method, we use DNS cache servers and routers together. Most client
processes use a DNS cache server to resolve a name before accessing an external
server. Therefore, the DNS cache server is one of the best places for issuing
capabilities. The routers verify the capabilities, and passes or blocks packets.

Since capabilities could be stolen, to invalidate stolen capabilities, we issue
capabilities dynamically and attach a time to live (TTL) to each one.

To realize our method, we have modified a library in Linux, the Linux kernel,
a DNS cache server, and a router. We have also implemented utility programs

2

that manage capabilities.

The rest of this paper is organized as follows. Section 2 discusses related
work. Section 3 explains our capability-based egress NAC. Section 4 presents
experimental results. Finally, section 5 concludes this paper.

2 Related work

The Platform for Internet Content Selection (PICS)[2] enables labels (meta-
data) to be associated with Internet contents. PICS is designed to help parents
and teachers control what children can access on the Internet. It also facilitates
other uses for labels, including code signing and privacy. Based on the PICS
platform, filtering software has been built. Some filtering products[3][4] can
interpret HTTP, SMTP, NNTP, etc. with proxies. Since our method replaces
packet filters, it can be used together with such proxies.

Authentication Gateway[5], Opengate[6] and Service Selection Gateway[7] are
captive portals that perform egress NAC. A captive portal redirects all Web
requests to a built-in Web server until a user has been authenticated by the
Web server. When the Web server authenticates the user, the router changes
the filtering rules to pass the user’s packets. Since those captive portals are also
based on ACL, changing access rights involves network administrator effort.

SOCKS[8][9] is a proxy protocol on transport layer. It can authenticate the
user for each connection. The current NAC of SOCKS is based on ACLs. We
could make capability-based egress NAC by using SOCKS, but we use the IP
option, so we choose not to use SOCKS.

Amoeba[10] is a distributed operating system. It protects files and directories
based on capabilities. In Amoeba, a directory server (name server) translates
an ASCII file name into a capability. To access the file, processes need the
capability. We refine directory servers for egress NAC.

3 Capability-based egress NAC

3.1 Environment

Fig. 1 shows our target environment. The internal network is separated from
the external network by a router. The internal network has a DNS cache
server. The router has a packet filter. Users login to client hosts on the internal

3

Alice

A1

B1

B2

DNS cache server

Bob

ServerPolicy

lookup issue

transfer

internal network external network

data flow

host

process

message

router

packet
filter

capability

Fig. 1. Overview of capability-based egress NAC with client, DNS server, and router.

network. A user can login to multiple hosts at the same time. Multiple users
can share a single client host at the same time. External server processes work
on external server hosts. Multiple external server processes can work on a
single external server host at the same time.

3.2 Overview of capability-based egress NAC

To make capability-based egress NAC, we use a DNS cache server and a router
together. Fig. 1 shows an overview of our method.

When a user accesses an external server, he/she runs a client process. The
process attaches the user name and service name to a DNS query message,
and sends the message to the DNS cache server. The DNS cache server issues
a capability according to the policy and sends back a DNS answer message
with the capability. When the process tries to send a packet to the external
server, the process attaches the capability to the packet and sends it to the
router. The router verifies the capability of the packet by using a packet filter.
If the capability is correct, the router passes the packet. If the packet does
not include a capability or if the capability is incorrect, the router blocks the
packet.

A user can transfer capabilities to another user. In Fig. 1, Alice has the right to
access an external server. When a client process (A1 in Fig. 1) tries to access
the external server, a capability is issued for the process. When the process
sends a packet with the capability, the packet can go through the router and
reach the server. Bob does not have access rights to the external server and a
client process (B1 in Fig. 1) does not have a capability for the server. When
the process sends a packet without a capability, the packet cannot go through
the router. Alice can transfer the capability for the server from her process
to Bob’s process (B2 in Fig. 1). Now, if his process sends a packet with the

4

capability, the packet can go through the router and reach the server.

In the paper [1], we have described a method that uses an operating system
kernel to manage capabilities. In this paper, we use a utility program called
capability-agent to manage capabilities outside the kernel. This utility program
is designed based on ssh-agent[11]. Ssh-agent is a program that holds private
keys for user authentication with public keys. Like ssh-agent, capability-agent
communicates with applications through UNIX domain sockets.

Since capabilities can be stolen, to invalidate stolen capabilities, we give each
capability a time to live (TTL). Therefore, a stolen capability expires and
becomes ineffective after this time.

3.3 Effective usage of capabilities and utility programs

In Section 1, we have shown the effective usage of capabilities in a company. In
this section, we show another effective usage of capabilities in an educational
organization.

A teacher would often like to show school children a particular external web
site that is blocked for them. Capability-based egress NAC is useful in this
situation. Table 1 shows our utility programs. First, the teacher runs the
utility program capability-exp to get the capability for the site and saves the
capability into a file. Second, the teacher uploads the file to a web page for
the children (Fig. 2). Third, the children access the page and download the
file. The browser executes the utility program capability-ctl according to the
MIME-type (application/capability-ctl) and the extension (.capability) of the
file. This program reads the capability from the file, and imports the capability
to his/her capability-agent. Finally, the children can access the external site
with the browser.

The capability in the file is temporary. When the capability expires, the school
children can no longer access the site. In capability-based egress NAC, none
of the processes requires a network administrator. In ACL-based egress NAC,

Table 1
Utility programs.

Name Description

capability-agent Holds a capability list.

capability-ctl Manipulates a capability list in capability-agent.

capability-exp Exports capabilities from capability-agent and stores them into

a file.

5

Fig. 2. Screenshot of class page

the teacher must request a network administrator to change the ACL before
the class. Furthermore, the network administrator must manually restore the
ACL after the class has ended.

3.4 Describing policies for issuing capabilities

In our method, capabilities are issued according to a policy that is described
by network administrators. The policy is described as a list of rules. Each rule
consists of the permission to issue capabilities, user name, domain name, and
service name in the following syntax.

permission user domain service

The field permission is either allow or deny. Fields user and domain can
include wildcards such as ”*”. The policy is evaluated from top to bottom.
If the field permission of the matching rule is allow, we issue a capability.
If the field permission is deny or no rules are matched, we do not issue a
capability.

3.5 Format of a capability

Fig. 3 shows the format of a capability in our method. The capability consists
of a version number, an external server identifier, a time to live (TTL), and
an authentication code. The version number of this format is 1. The server
identifier consists of the IP address of a server host that the server works on
and the number of the port where the server is expecting incoming request
of connections. The TTL is the time since the epoch (00:00:00 UTC, January
1, 1970) measured in seconds. The authentication code is a digital signature
for preventing the forgery of capabilities. The authentication code requires a
secret key shared by a DNS cache server and a router. The authentication code
is a 16-octet number that is computed from the version number, IP address,

6

Version IP address (4octets) Port (2octets) TTL (4octets)

Authentication code (16octets)

External server identifier(2octets)

Fig. 3. Format of a capability.

An application
capability-

agent
getaddrinfo connect

setsockopt

tcp_v4_connect
DNS
server

Netfilter

socket

Call / Request
and Response
Capability flow

Linux kernel

Userspace

Module

Process
glibc

Router

Fig. 4. Capability flows

port number, and TTL plus the secret key. As a digital signature algorithm,
we use HMAC-MD5.

To carry capabilities, we have extended the DNS message format and defined
a new IP option[1].

3.6 Capability flows

We have implemented capability-based egress NAC in hosts that used the
Linux operating system. Fig. 4 shows capability flows.

When a process tries to resolve a server’s domain name, firstly, the resolver
function (getaddrinfo) is called. Secondly, it creates a DNS query message
with a domain name, a user name, and a service name. Thirdly, the resolver
signs the message with TSIG[12] to prevent forgery. TSIG is a protocol that
signs DNS messages based on shared secret keys and one-way hash functions 2 .
Finally, the resolver sends the DNS query message to the DNS server.

When the DNS server receives the query message, it verifies that the message
is correct with TSIG and extracts the domain name, the user name, and the
service name. After that, the DNS server evaluates the policy with the domain
name, the user name, and the service name. If the policy allows the access, the
DNS server issues capabilities and generates a DNS answer message with the
capabilities. To handle TSIG and issue capabilities, we have modified the DNS
server (name daemon, named in short) of BIND9[13]. The size of modified part
is about 1500 lines.

2 HMAC-MD5 is used by default.

7

When the resolver receives a DNS answer message from the DNS server, firstly,
it verifies that the message is correct with TSIG. Secondly, it extracts capa-
bilities from the DNS message and passes the capabilities to capability-agent
through a UNIX domain socket. Finally, it returns IP addresses to the caller.

To notify capabilities to the Linux kernel, we use wrappers for the systemcall
connect, and sendto. These wrappers get the capability from capability-agent
for an appropriate destination and issues the systemcall setsockopt to save
the capability into the socket before calling the original systemcall connect
or sendto.

To send capabilities to a router, we modified the function tcp v4 connect

in the TCP layer and the function udp sendmsg in the UDP layer in the
Linux kernel. When the functions tcp v4 connect or udp sendmsg is called,
it checks the socket. When the socket has a capability, the function attaches
the capability to the IP option field of the outgoing IP packet.

To implement our router, we use netfilter[14], a packet filter in Linux. To check
capabilities in the IP option, we have implemented a module of netfilter.

When the router receives a packet from an internal host, the module extracts
a capability from the packet and verifies it. If the packet has no capability or
has a wrong capability, the module drops the packet. Furthermore, the module
deletes the IP option from the packet because the IP option is not needed in
external networks.

4 Experiments

We have performed experiments to evaluate performance of our resolver, DNS
server, Linux kernel, and router. All experiments were done on computers
having an Intel Pentium4 3.0-GHz processor, 1 GB of memory, and one or two
Intel PRO/1000 network interface cards. Their operating system was Debian
GNU/Linux 3.0 with Linux kernel 2.6, and they were connected with a Gigabit
Ethernet switch (DELL, PowerConnect 2616).

4.1 Microbenchmark for the DNS server

We ran a microbenchmark for the original named and the modified named on
a native Linux kernel. This microbenchmark calls the function getaddrinfo

1000 times in a single process and measures the average of execution times.
The results are shown in Fig. 5.

8

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 ti
m

e
in

 m
il

li
se

co
nd

s Original
resolver and
named

Our resolver
and named

Fig. 5. Execution times of the function
getaddrinfo.

0

0.2

0.4

0.6

0.8

1

1.2

A
ve

ra
ge

 ti
m

e
in

 m
il

li
se

co
nd

s Original
glibc, kernel
and router

Our glibc,
kernel and
router

Fig. 6. Response times of the HTTP
server.

The results in Fig. 5 mean that our resolver and DNS server was 0.29 mil-
lisenconds slower than the original resolver and DNS server at the time of
name resolution. Most of this time was consumed by computing HMAC-MD5
in both the resolver and DNS server. This difference is much shorter than the
execution time in the case of a cache miss.

4.2 Performance of the capability-enabled router

To evaluate the performance of our glibc, Linux kernel and router, we mea-
sured response times of an HTTP server (Apache 2.0) that is connected out-
side the router. In this experiment, the client program called the function
getaddrinfo. After that, the client program called the systemcall connect,
write, read, and close 100 times and measured the average of execution
times. The HTTP server returned a 1-kilobyte file. The results are shown in
Fig. 6.

The results in Fig. 6 mean that our glibc, Linux kernel and router were 0.02
milliseconds slower than the original glibc, Linux kernel and router that passed
all packets. However, those differences are much shorter than typical response
times of HTTP servers on the Internet, so internal users are not aware of them.

5 Conclusion

In this paper, we proposed the egress network access control based on capa-
bilities. In our egress NAC, a user can transfer the capability to another user
without any effort by the administrator.

To realize capability-based egress NAC, we used the DNS cache server and
router together. The DNS server issues capabilities according to a policy. The
router verifies the capabilities, and determines whether to pass or block the

9

packets. Experimental results show that this implementation imposes a negli-
gible overhead.

References

[1] S. Suzuki, Y. Shinjo, T. Hirotsu, K. Itano, K. Kato, Capability-based egress
network access control for transferring access rights, Third International
Conference on Information Technology and Applications (ICITA’2005) 2 (2005)
488–495.

[2] P. Resnick, J. Miller, PICS: Internet access controls without censorship,
Communications of the ACM 39 (10) (1996) 87–93.

[3] Symantec Corporation, Symantec gateway security 5400 series refernece guide,
http://www.symantec.com/.

[4] Aladdin Knowledge Systems, eSafe 4 implementation guide,
http://www.eAladdin.com/.

[5] N. Zorn, Authentication gateway howto,
http://www.itlab.musc.edu/˜nathan/authentication gateway/.

[6] Y. Watanabe, K. Watanabe, H. Eto, S. Tadaki, A user authentication
gateway system with simple user interface, low administrarion cost and wide
applicability, IPSJ Journal 42 (12) (2001) 2802–2809.

[7] Cisco Systems Inc., Service selection gateway.

[8] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, L. Jones, SOCKS protocol
version 5, RFC1928.

[9] M. Leech, Username/password authentication for SOCKS V5, RFC1929.

[10] S. J. Mullender, G. van Rossum, A. S. Tanenbaum, R. van Renesse, H. van
Staveren, Amoeba – a distributed operating system for the 1990s, IEEE
Computer 23 (1990) 44–53.

[11] OpenBSD, OpenSSH, http://www.openssh.com/.

[12] P. Vixie, O. Gudmundsson, D. Eastlake, B. Wellington, Secret key transaction
authentication for DNS (TSIG), RFC2845.

[13] Internet System Consortium, BIND 9, http://www.isc.org/.

[14] O. Andreasson, Iptables Tutorial 1.1.19, http://www.netfilter.org/.

10

