Acknowledgments
I wish to express my sincere appreciation to Dr. Kazuo Shinozaki of RIKEN, Tsukuba Institute, and Dr. Kazuko Yamaguchi-Shinozaki of JIRCAS (Japan International Research Center for Agricultural Sciences, Ministry of Agriculture, Forestry, and Fisheries) for their invaluable suggestions and encouragement throughout the course of my research and in the preparation of this manuscript.

I am also indebted to Prof. Hiroshi Kamada and Dr. Shinobu Satoh of the University of Tsukuba, Dr. Motoaki Seki, Dr. Satoshi Iuchi and Dr. Masatomo Kobayashi of RIKEN, for their invaluable suggestions, advices, and constructive criticisms of my research.

Special thanks must be accorded to all members of the laboratories, for useful discussions of the results.

I am also grateful to Dr. Chieko Ohsumi of Ajinomoto, for their valuable suggestions for several experimental techniques and the analyses of the results of this research.
References
Bachmann, M., Matile, P. and Keller, F. (1994) Metabolism of the raffinose family
oligosaccharides in leaves of Ajuga reptans L. Cold acclimation, translocation, sink to


Plant Cell, 7, 1099-1111.

Bohnert, H.J. and Jensen, R.G. (1996a) Metabolic engineering for increased salt tolerance -

Bohnert, H.J. and Jensen, R.G. (1996b) Strategies for engineering water-stress tolerance in


Brunac, P., Horbowicz, M., Downer, S.M., Dickerman, A.M., Smith, M.E. and Obendorf,
R.L. (1997) Raffinose accumulation related to desiccation tolerance during maize (Zea
mays L.) seed development and maturation. J. Plant Physiol. 150, 481-488.

and galactinol synthase in developing seeds and leaves of legumes. J. Agric. Food Chem.
38, 351-355.

54, 579-599.

Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple
biochemical changes associated with cold acclimation. Plant Physiol. 124, 1854-1865.

Giraudat, J., Parey, F., Berthache, N., Gosti, F., Leung, J., Morris, P-C, Bouvier-Durand,
Plant Mol. Biol. 26, 1557-1577.

Characterization of alpha-galactosidases from germinatig soybean seed and their use for
hydrolysis of oligosaccharides. Phytochemistry 58, 67-73.


Mitsuhara, I., Ugaki, M., Hirochika, H., Ohshima, M., Murakami, T., Gotoh, Y.,


Sheveleva, E., Chmara, W., Bohnert, H.J. and Jensen, R.G. (1997) Increased salt and


Trossat, C., Nolte, K.D. and Hanson, A.D. (1996) Evidence that the pathway of
dimethylsulfoniopropionate biosynthesis begins in the cytosol and ends in the chloroplast.

Plant Physiol. 111, 965-973.
