著者別名	大津 廣生

権利

doi: 10.1021/acs.jafc.7b04924
Heterologous and High Production of Ergothioneine in Escherichia coli

Ryo Osawa,† Tomoyuki Kamide,‡ Yasuharu Satoh,*†§ Yusuke Kawano,* Iwao Ohtsu,*§ and Tohru Dairi*†‡§

†Graduate School of Chemical Science and Engineering and ‡Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
§Innovation Medical Research Institute, University of Tsukuba, Tsukuba, Ibaraki 305-8550, Japan

ABSTRACT: Ergothioneine (ERG) is a histidine-derived thiol compound suggested to function as an antioxidant and cytoprotectant in humans. Therefore, experimental trials have been conducted applying ERG from mushrooms in dietary supplements and as a cosmetic additive. However, this method of producing ERG is expensive; therefore, alternative methods for ERG supply are required. Five Mycobacterium smegmatis genes, egtABCDE, have been confirmed to be responsible for ERG biosynthesis. This enabled us to develop practical fermentative ERG production by microorganisms. In this study, we carried out heterologous and high-level production of ERG in Escherichia coli using the egt genes from M. smegmatis. By high production of each of the Egt enzymes and elimination of bottlenecks in the substrate supply, we succeeded in constructing a production system that yielded 24 mg/L (104 μM) secreted ERG.

KEYWORDS: ergothioneine, heterologous production, Escherichia coli

INTRODUCTION

Ergothioneine (ERG), a histidine-derived thiol compound, was isolated from an ergot fungus, Claviceps purpurea, more than a century ago. ERG is also known to be synthesized in actinobacteria, cyanobacteria, and a fission yeast.1–3 Recent studies show that ERG functions as an antioxidant, such as glutathione, mycothiol, and bacillithiol. There is no direct evidence for biosynthesis of ERG in humans. However, ERG has been reported to be accumulated in various cells and tissues at high concentrations, probably by intake from diets, such as mushrooms and red beans, that contain relatively large amounts of ERG through an ERG-specific organic cation transporter, OCTN1.4,5

The presence of the ERG-specific transporter and the extensive accumulation of ERG in tissues suggest that ERG should have significant biological functions in humans. Although the true physiological role of ERG in humans has yet to be fully understood, ERG has been shown by in vitro experiments to function as an antioxidant and a cytoprotectant. Therefore, applications of ERG in dietary supplements and as a cosmetic additive have been explored, and there is an increasing demand for ERG.6 Mushrooms have traditionally been the source of ERG.7 However, slow growth, low content, and time-consuming purification procedures lead to a high manufacturing cost. Therefore, alternative and sustainable sources of ERG are necessary.

One such reliable and practical method is a fermentative process using microorganisms, such as actinobacteria and cyanobacteria, that are known to produce ERG. However, their ERG productivities are very low (1.18 mg/g of dry weight after 4 weeks of cultivation of Mycobacterium avium and 0.8 mg/g of dry weight of Oscillatoria sp.),6,8 and thus, genetic and metabolic engineering are indispensable for industrial production. Until recently, however, there were no reports on ERG biosynthesis genes and enzymes. In 2010, five genes in Mycobacterium smegmatis, egtABCDE, were confirmed to be responsible for ERG biosynthesis (Figure 1).9 In the biosynthetic pathway, EgtD catalyzes the formation of hercynine (HER) by transfer of three methyl groups derived from S-adenosylmethionine (SAM) to L-histidine (L-His). Then, EgtB catalyzes O2-dependent C–S bond formation between γ-glutamylcysteine (γGC) supplied by EgtA and HER to form hercynyl-γ-glutamylcysteine sulfoxide (γGC-HER). This is followed by removal of the L-glutamate (L-Glu) moiety by EgtC, an amidohydrolase, to produce hercynylcysteine sulfoxide (Cys-HER). Then, EgtE, a PLP-dependent C–S lyase, catalyzes the formation of ERG with concomitant formation of pyruvate and ammonia as side products.

In this study, we developed heterologous and high-level production of ERG in Escherichia coli using the egt genes from M. smegmatis. By high production of each of the Egt enzymes and elimination of bottlenecks in substrate supply, the production system yielded 24 mg/L (104 μM) secreted ERG.

MATERIALS AND METHODS

General Procedures. Lysogeny broth (LB, Lennox) medium was purchased from Sigma-Aldrich Japan K.K. (Tokyo, Japan); L-methionine (L-Met) and L-His were obtained from Wako Pure Chemical Industry (Osaka, Japan); and HER was purchased from Shinsei Chemical Company, Ltd. (Osaka, Japan). Other chemicals...
were of analytical grade and purchased from Wako Pure Chemical Industry or Sigma-Aldrich Japan. Primers were obtained from FASMAC Co., Ltd. (Kanagawa, Japan). Enzymes and kits for DNA manipulation were purchased from Takara Bio, Inc. (Shiga, Japan) or New England BioLabs Japan, Inc. (Tokyo, Japan). Polymersase chain reaction (PCR) was carried out using a GeneAmp PCR System 9700 thermal cycler (Thermo Fisher Scientific, Inc., Waltham, MA, U.S.A.) with Taq or Flex DNA polymerase (Takara Bio). General genetic manipulations of E. coli were performed according to standard protocols. High-resolution electrospray ionization Fourier transform mass spectrometry (HR-ESI−MS/FT-MS) analysis was performed using an Exactive system (Thermo Fisher Scientific, Inc.).

Bacterial Strains and Cultures. Microorganisms used in this study were summarized in Table 1. *E. coli* XL1-Blue (Nippon Gene Co., Ltd., Tokyo, Japan), BW25113 (National Institute of Genetics, Shizuoka, Japan), and BL21(DE3) (Merck KGaA, Darmstadt, Germany), and BW25113 (National Institute of Genetics, Shizuoka, Japan), and BL21(DE3) (Merck KGaA, Darmstadt, Germany), and BW25113 harboring pCF1s-Red (National Institute of Genetics, Shizuoka, Japan). General genetic manipulations of *E. coli* were performed according to standard protocols. High-resolution electrospray ionization Fourier transform mass spectrometry (HR-ESI−MS/FT-MS) analysis was performed using an Exactive system (Thermo Fisher Scientific, Inc.).

Preparation of Egt Recombinant Enzymes. Detailed plasmid construction methods are described in Supplementary Methods 1 of the Supporting Information, and the plasmids are summarized in Table 2. Bacterial Strains Used in This Study

<table>
<thead>
<tr>
<th>strain</th>
<th>description</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. smegmatis</td>
<td>ERG producer</td>
<td>JCM^a</td>
</tr>
<tr>
<td>JCM6386</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XL1-Blue</td>
<td>hsaR17, recA1, amdM1, gyrA96, thi-1, supE44, relA1, lacIF, proAB*, lacPΔM15, Tn10Δ7(oriT*)</td>
<td>Nippon Gene</td>
</tr>
<tr>
<td>BL21(DE3) F′, ompT hsa96 (m090) gal dcm (DE3)</td>
<td>for this study</td>
<td></td>
</tr>
<tr>
<td>BW25113 rrn3A ΔlacZΔ878 hsdR514 Δ(rMkBAD)567 Δ(rHaBAD)568 rplB-1</td>
<td>NIG^b</td>
<td></td>
</tr>
<tr>
<td>ET1 BW25113 harboring pCF1s-MsD</td>
<td>for this study</td>
<td></td>
</tr>
<tr>
<td>ET2 BW25113 harboring pCF1s-MsD, pQE1a-mMsB</td>
<td>for this study</td>
<td></td>
</tr>
<tr>
<td>ET3 BW25113 harboring pCF1s-MsD, pQE1a-mMsB, pAC1c-hMsC/hMsE</td>
<td>for this study</td>
<td></td>
</tr>
<tr>
<td>ET4 BW25113 harboring pCF1s-MsD, pQE1a-mMsB/EcA, pAC1c-hMsC/hMsE</td>
<td>for this study</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>plasmid</th>
<th>description</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pQE1a-Red</td>
<td>protein production plasmid, tac promoter, ColE1 ori, Ap^R</td>
<td>lab stock</td>
</tr>
<tr>
<td>pCF1s-Red</td>
<td>protein production plasmid, tac promoter, CDF ori, Sm^R</td>
<td>lab stock</td>
</tr>
<tr>
<td>pET-21a</td>
<td>protein production plasmid, T7 promoter, pBR322 ori, Ap^R</td>
<td>Merck</td>
</tr>
<tr>
<td>pACYC184-1</td>
<td>protein production plasmid, T7 promoter, p15A ori, Cm^R</td>
<td>Merck</td>
</tr>
<tr>
<td>pQE1a-MsB</td>
<td>pQE1a-Red derivative, production of EgtB</td>
<td>this study</td>
</tr>
<tr>
<td>pQE1a-mMsB</td>
<td>pQE1a-MsB derivative, production of MBP-fused EgtB</td>
<td>this study</td>
</tr>
<tr>
<td>pQE1a-mMsB/EcA</td>
<td>pQE1a-mMsB derivative, co-production of MBP-fused EgtB and GshA</td>
<td>this study</td>
</tr>
<tr>
<td>pQE1a-MsC</td>
<td>pQE1a-MsC derivative, production of His-tagged EgtC</td>
<td>this study</td>
</tr>
<tr>
<td>pQE1a-hMsC</td>
<td>pQE1a-MsC derivative, production of His-tagged EgtC</td>
<td>this study</td>
</tr>
<tr>
<td>pQE1a-MsE</td>
<td>pQE1a-MsE derivative, production of His-tagged EgtE</td>
<td>this study</td>
</tr>
<tr>
<td>pQE1a-hMsE</td>
<td>pQE1a-MsE derivative, production of His-tagged EgtE</td>
<td>this study</td>
</tr>
<tr>
<td>pAC1c-hMsC/hMsE</td>
<td>pAC1c-hMsC/hMsE</td>
<td>this study</td>
</tr>
<tr>
<td>pCF1s-MsD</td>
<td>pCF1s-Red derivative, production of EgtD</td>
<td>this study</td>
</tr>
</tbody>
</table>

| primers (Table S1 of the Supporting Information), in which restriction sites were introduced at the N and C termini. The PCR products were respectively cloned into the expression vectors. The plasmids obtained were introduced into *E. coli* BL21(DE3). A liquid culture of the plasmid description source |

Figure 1. ERG biosynthetic pathway.
recombinant enzymes and their activities by production of intermediate compounds (HER, γGC-HER, and Cys-HER) and ERG by in vitro experiment (Figure 1). Because E. coli has an egtA orthologue, gshA, which is responsible for glutathione biosynthesis,26 we expressed the other genes, egtB, egtC, egtD, and egtE. We also prepared the intermediate compounds, which are not commercially available, with the recombinant enzymes to obtain standards for quantitative analysis (Supplementary Methods 2 of the Supporting Information).

Overproduction of Recombinant Enzymes. For overproduction of Egt enzymes, we used pQE1a-Red and pCF1s-Red, both of which are home-constructed and compatible vectors with the tac promoter for protein production (Figure S1 of the Supporting Information). As Figure S2 of the Supporting Information shows, transformants harboring pCF1s-MsB carrying egtD overproduced EgtD in soluble form. To confirm whether the recombinant protein had the expected activity, we carried out in vitro experiments with cell-free extracts containing the recombinant enzyme.5,13 The cell-free extracts were incubated with l-His and excess SAM. After the reaction, the product was analyzed by LC−ESI−MS. A specific peak with the same retention time and mass spectrometry (MS) spectrum as the HER standard was clearly detected after 1 h of incubation, demonstrating that EgtD converted l-His into HER (Figure S3 of the Supporting Information).

We next overproduced recombinant EgtB using pQE1a-Red (Figure S1 of the Supporting Information) and changed the probable start codon TTG into ATG. However, recombinant EgtB formed inclusion bodies in multiple culture conditions. Therefore, a plasmid from which a recombinant enzyme is produced as a maltose binding protein (MBP)-fused enzyme (Figure S4 of the Supporting Information) shows, HER completely disappeared and the formation of a new product with the same retention time and mass spectrometry (MS) spectrum as the HER standard was clearly detected after 1 h of incubation, demonstrating that EgtB converted l-His into HER. (Figure S5 of the Supporting Information).
γGC-HER. The thus formed intermediate compound γGC-HER was purified by high-performance liquid chromatography (HPLC) (Supplementary Methods 2 of the Supporting Information) and used as a standard for quantitative analysis.

Finally, overproduction of recombinant EgtC and EgtE was examined. We first used the same vector as for EgtB production, but no production of either enzyme was observed. We then examined a plasmid from which a recombinant enzyme is produced as a His-tagged enzyme. In this case, both EgtC and EgtE were successfully overproduced. To confirm whether the recombinant enzymes had the expected activity, we carried out in vitro experiments with the purified recombinant enzymes (Figure S4 of the Supporting Information). Recombinant EgtC was incubated with enzymatically prepared γGC-HER. After 17 h of reaction, the product was analyzed by LC−ESI−MS. As shown in Figure 3, a new peak with m/z 333.23 was detected and Cys-HER formation was suggested. On the basis of HR-ESI−FT−MS analysis of the purified compound, the molecular formula of the product was determined to be C_{12}H_{20}O_{5}N_{4}S (m/z: [M + H]⁺) calculated for C_{12}H_{21}O_{5}N_{4}S, 333.12272; observed, 333.12290), which corresponded to that of Cys-HER. The thus formed Cys-HER was purified (Supplementary Methods 2 of the Supporting Information) and used as a standard for quantitative analysis.

By adding recombinant EgtE together with EgtC into the EgtB reaction mixture, we confirmed the formation of ERG by LC−ESI−MS analysis (Figure 4), showing that all of the recombinant Egt enzymes possessed the expected activities.

Simultaneous Production of Egt Enzymes for ERG Production. To reconstruct the ERG-producing pathway in *E. coli*, we optimized the production conditions in a stepwise manner: HER, then γGC-HER, and finally ERG production (Figures 1 and 2).

The first step was HER production. *E. coli* BW25113 harboring pCF1s-MsD (named strain ET1) was cultured in M9Y medium, and 91 ± 2 mg/L HER (460 ± 10 μM) was produced in the culture broth after 48 h. We then carried out feeding experiments with L-His and L-Met, because amino acid biosynthesis in *E. coli* is strictly regulated by feedback inhibition and/or transcriptional repression. L-Met and L-His feeding increased the yield: 164 ± 3 mg/L HER (833 ± 15 μM) was produced after 48 h of cultivation (Figure 5). After this, L-His and L-Met feeding was employed in all in vivo production experiments.

We next carried out in vivo co-production of EgtD and EgtB for γGC-HER production. Transformants of *E. coli* BW25113 carrying both pCF1s-MsD and pQE1a-mMsB (strain ET2) were cultivated in the medium supplemented with 1-His and 1-Met. As Figure 6 shows, we confirmed 24 ± 1 mg/L γGC-HER (52 ± 2 μM) production after 24 h of cultivation, indicating that EgtB converted HER to γGC-HER using endogenous γGC in *E. coli*. However, accumulation of 3-fold higher amounts of HER (110 ± 5 mg/L) than Cys-HER (36 ± 2 mg/L) was...
detected, suggesting that γGC-HER production was rate-limiting.

For simultaneous expression of all egt genes, egtC and egtE, both of which were expressed from the tac promoter of pQE1a, were recombined into plasmid pACYC Bluescript, which is compatible with pQE1a-Red and pCF1s-Red, to construct pAC1c-hMsC/hMsE (Figure 2 and Supplementary Methods 2 of the Supporting Information). The plasmid was successfully constructed, and production of both enzymes in soluble forms in E. coli was confirmed by SDS--PAGE (Figure S6 of the Supporting Information). The plasmid was introduced into strain ET2 to construct strain ET3, and recombinant enzyme production was examined. As Figure S7 of the Supporting Information shows, all of the enzymes were produced in soluble forms. We then examined ERG production. Strain ET3 produced 19 ± 2 mg/L (83 ± 8 μM) ERG together with 73 ± 15 mg/L (370 ± 76 μM) HER in the culture broth after 72 h of cultivation (Figure 7 and Table 3). These results suggested that the EgtB-catalyzed reaction is a bottleneck.

ERG Production and Improvement of Rate-Limiting Steps. Considering that EgtB was overproduced in a soluble form in the producing strain ET3 and that it showed enough activity in *in vitro* experiments, we considered that insufficient supply of γGC, the substrate of EgtB, might cause the accumulation of HER. To test this hypothesis, overproduction of γGC synthetase was carried out. To produce γGC synthetase, the gshA gene from *E. coli* was cloned and inserted into pQE1a-mMsB to construct pQE1a-mMsB/EcA. Although MBP-fused EgtB and GshA were produced in soluble forms in E. coli BW25113 harboring the three plasmids (strain ET4) (Figure S8 of the Supporting Information), ERG productivity was decreased in comparison to that of strain ET3 to 17 ± 1 mg/L (72 ± 2 μM) after 72 h of cultivation (Table 3). In comparison of SDS--PAGE data for strains ET3 and ET4 (Figures S7 and S8 of the Supporting Information), soluble MBP-fused EgtB was found to be decreased in strain ET4. This could be the reason for the reduced productivity.

We then employed another strategy to enhance the γGC supply. In ERG biosynthesis, γGC is used as a sulfur donor. In particular, l-Cys is a net sulfur donor, because the l-Glu moiety of γGC is released by EgtC. Therefore, reinforcement of l-Cys flux may be effective in enhancing γGC flux and ERG production. Because l-Cys addition into media was reported to be toxic to E. coli cells, we employed another strategy. We have been studying a l-Cys biosynthetic pathway in *E. coli* and demonstrated that thiosulfate (S2O32−) was a better sulfur source than sulfate (SO42−) for high l-Cys production. We therefore fed thiosulfate into the growth media. When strain ET3 was cultured in M9Y supplemented with l-His and l-Met, ND = not detected. ET3 was cultured in M9Y media supplemented with l-His, l-Met, and thiosulfate.

![Figure 5](image1.png)
Figure 5. Culture profiles of strain ET1. *E. coli* BW25113 harboring pCF1s-MsD (strain ET1) was cultured in M9Y medium supplemented with l-His and l-Met. After 3 h of cultivation, 0.5 mM IPTG was added to the medium. Data are presented as mean values with standard errors from three independent experiments.

![Figure 6](image2.png)
Figure 6. Culture profiles of strain ET2. *E. coli* BW25113 harboring pCF1s-MsD and pQE1a-mMsB (strain ET2) was cultured in M9Y medium supplemented with l-His and l-Met. After 3 h of cultivation, 0.5 mM IPTG was added to the medium. Data are presented as mean values with standard errors from three independent experiments.

![Figure 7](image3.png)
Figure 7. Culture profiles of strain ET3. *E. coli* BW25113 harboring pCF1s-MsD, pQE1a-mMsB, and pAC1c-hMsC/hMsE (strain ET3) was cultured in M9Y medium supplemented with l-His and l-Met. After 3 h of cultivation, 0.5 mM IPTG was added to the medium. Data are presented as mean values with standard errors from three independent experiments.

| Table 3. Culture Profiles of ET3 and ET4 Strains*
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain</td>
<td>OD</td>
<td>HER (mg/L)</td>
<td>γGC-HER (mg/L)</td>
<td>Cys-HER (mg/L)</td>
<td>ERG (mg/L)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ET3*</td>
<td>10.1 ± 0.5</td>
<td>73 ± 15</td>
<td>ND</td>
<td>10 ± 2</td>
<td>19 ± 2</td>
</tr>
<tr>
<td>ET4*</td>
<td>8.7 ± 0.2</td>
<td>121 ± 12</td>
<td>1 ± 1</td>
<td>9 ± 1</td>
<td>17 ± 1</td>
</tr>
<tr>
<td>ET3*</td>
<td>11.1 ± 0.5</td>
<td>48 ± 17</td>
<td>ND</td>
<td>9 ± 0</td>
<td>24 ± 4</td>
</tr>
</tbody>
</table>

*Data after 72 h of cultivation are presented as mean values with standard error from three independent experiments. ET3 and ET4 were cultured in M9Y media supplemented with l-His and l-Met. ND = not detected. ET3 was cultured in M9Y media supplemented with l-His, l-Met, and thiosulfate.
Considering that the reported ERG contents of mushrooms were from 0.15 to 7.27 mg/g of dry weight, our system might become an alternative method for ERG supply. However, significant amounts of HER still accumulated, suggesting that more supply of γGC and l-Cys by metabolic engineering and use of another EgtB with higher activity are indispensable for high-level production of ERG.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jafc.7b04924.

Supplementary Methods 1 and 2, vectors pQE1a-Red and pCF1s-Red (Figure S1), SDS–PAGE analysis of EgtD production (Figure S2), LC–ESI–MS analysis of EgtD reaction products (Figure S3), SDS–PAGE analysis of purified recombinant EgtB, EgtC, and EgtE (Figure S4), LC–ESI–MS analysis of EgtB reaction products (Figure S5), SDS–PAGE analysis of recombinant EgtC and EgtE production (Figure S6), SDS–PAGE analysis of production of recombinant Egt enzymes and GshA in strain ET3 (Figure S7), SDS–PAGE analysis of production of recombinant Egt enzymes and GshA in strain ET4 (Figure S8), and primers used in this study (Table S1) (PDF).

AUTHOR INFORMATION

Corresponding Authors
*Telephone: +81-11-706-7815. Fax. +81-11-706-7118. E-mail: syasu@eng.hokudai.ac.jp.
*Telephone: +81-11-706-7815. Fax. +81-11-706-7118. E-mail: dairi@eng.hokudai.ac.jp.

ORCID
Yasuharu Satoh: 0000-0001-6671-7758
Tohru Dairi: 0000-0002-3406-7970

Funding
This work was supported by the Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries and Food Industry (26027AB) from Ministry of Agriculture, Forestry and Fisheries (MAFF), Japan (to Iwao Ohtsu).

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors are grateful to Professor Tsutomu Sato (Graduate School of Science and Technology, Niigata University, Niigata, Japan) for providing M. smegmatis genomic DNA. The authors thank James Allen from Edanz Group (www.edanzediting.com) for editing a draft of this manuscript.

NOMENCLATURE

ERG = ergothioneine
HER = hercynine
γGC = γ-glutamylcysteine
γGC-HER = hercynyl-γ-glutamylcysteine sulfoxide
Cys-HER = hercynylcysteine sulfoxide
SAM = S-adenosylmethionine
SAH = S-adenosylhomocysteine
l-His = l-histidine
l-Glu = l-glutamate

i-Cys = l-cysteine
i-Met = l-methionine
HR-ESI–FT–MS = high-resolution electrospray ionization Fourier transform mass spectrometry
MBP = maltose-binding protein
SDS–PAGE = sodium dodecyl sulfate polyacrylamide gel electrophoresis

REFERENCES