Honeybee Gastrointestinal Bacteria for Novel and Sustainable Disease Control Strategies

<table>
<thead>
<tr>
<th>Journal Title</th>
<th>Journal of Developments in Sustainable Agriculture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>8</td>
</tr>
<tr>
<td>Number</td>
<td>2</td>
</tr>
<tr>
<td>Page Range</td>
<td>85-90</td>
</tr>
<tr>
<td>Year</td>
<td>2013</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2241/00125594</td>
</tr>
</tbody>
</table>
Honeybee Gastrointestinal Bacteria for Novel and Sustainable Disease Control Strategies

Meihua Wu¹,², Yuya Sugimura², DeMar Taylor¹ and Mikio Yoshiyama²*

¹Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 Japan
²Honey Bee Research Unit, Animal Breeding and Reproduction Research Division, National Institute of Livestock and Grassland Science

Agricultural economic development strongly relies on the health of pollinators including honeybees. Honeybee health is afflicted by multiple risk factors such as toxicity from pesticide application, shortage of floral resources, climate change, reduction in genetic diversity and diseases caused by various pathogenic bacteria, fungi and viruses. Controlling disease is necessary for maintaining honeybee health and this will benefit both agricultural and apicultural industries. As other insects and animals, honeybees possess a diverse set of individual or colony level disease defense mechanisms. One route by which honeybees combat diseases is through the shielding effects of gastrointestinal bacteria. Except for some transient bacteria, a set of consistent and distinctive phylotypes of bacteria colonize honeybee digestive tracts. The beneficial bacterial communities inhabiting honeybee guts play key roles in maintaining honeybee health not only by participating in nutrient processing but also by enhancing the immune system, and inhibiting the growth of pathogenic organisms with metabolic products or obstruction of pathogen colonization. Therefore, a symbiotic microbial balance in the honeybee digestive tract is critical for protecting honeybees from disease and other risks. Many researchers have emphasized the beneficial roles of gastrointestinal bacteria in sustaining honeybee health and suggest their contributions to development of novel and sustainable disease control strategies.

Key words: Honeybee health, Digestive tract, Gastrointestinal bacteria, Sustainable, Disease control

1. Introduction

Pollinators play vital roles in the maintenance of wild ecosystems and agricultural production. Honeybees are beneficial insects for humans as the most economically valuable pollinators. One-third of the food consumed in the world is linked to pollination by insects including honeybees and the worldwide total economic value of insect pollination amounted to €153 billion in 2005 (Gallai et al., 2009). On the other hand, the value of bee pollination to natural plant biodiversity is not simply estimable (Moritz et al., 2010). Recently, honeybees are facing serious health threats and widespread population declines, through problems such as colony collapse disorder (CCD), especially in commercial beekeeping industries in both the United States and Europe (Ellis et al., 2010; Potts et al., 2010). Although there has been an almost 50% decrease in world honeybee stocks over the last century, human demands for pollinator-dependent crops to maintain health are simultaneously increasing by >300% (Aizen and Harder, 2009). Such an importance of honeybees for human welfare causes great concern about the health of honeybees.

Honeybee diseases are considered major afflicting factors of honeybee health and huge colony losses are linked to these diseases (Cox-Foster et al., 2007). Consequently, disease control is a most challenging task for protecting honeybee populations. At present, honeybee disease control mainly depends on anti-
otics such as tetracycline and fumagillin (Arbia and Babbay, 2011; Williams et al., 2008). However, using antibiotics in apiculture is legally banned in many countries of the European Union (Mutinelli, 2003), because of risks they present for both human and honeybee health (Martel et al., 2006; Pettis et al., 2004; Thompson et al., 2005). In addition, uses of antibiotics may also lead to the emergence of resistant bacterial strains (Miyagi et al., 2000). Therefore, novel and sustainable disease control methods are urgently needed to improve honeybee health and provide benefits for agriculture by increasing yield and quality of crop production.

Honeybees harbor a diverse assemblage of microbes including bacteria in their gastrointestinal tract (Gilliam et al., 1988; Gilliam and Prest, 1987). Previous studies well document the roles of beneficial gastrointestinal bacteria for food fermentation, preservation of food stores (Gilliam, 1997; Gilliam et al., 1989) and inhibition of the growth of pathogenic bacteria (Evans and Armstrong, 2006). Gastrointestinal bacteria are receiving great interest due to their potentiality as an alternative for sustainable disease control in honeybees. To develop novel and sustainable disease control strategies for honeybees, better understanding of the associations between gastrointestinal bacteria and honeybees are needed. In this review, we briefly introduce honeybee diseases and discuss disease control methods for protecting honeybee health. Subsequently, we briefly discuss the gastrointestinal bacteria associated with honeybees and their potential roles for improving disease control strategies.

2. Honeybee Diseases and Controls

Population declines in honeybees and other wild bees in the United States, Europe and elsewhere has led to worldwide concerns about its impact on the yield of agriculture and biodiversity of natural plants (Biesmeijer et al., 2006; Breeze et al., 2011; Gallai et al., 2009; Garibaldi et al., 2011). Many researchers have studied and revealed some risk factors that threaten honeybee colonies; including pathogens, malnutrition, pesticides, beekeeping practices, climate change and genetic diversity (Stokstad, 2007; van-Engelsdorp et al., 2008). Although multiple drivers and interactive effects may be responsible for the widespread declines of pollinator bees (Didham et al., 2007; Neumann and Carreck, 2010; Oldroyd, 2007), diseases caused by various pathogens are recognized as one significant factor afflicting honeybee health (Cox-Foster et al., 2007).

Honeybees are vulnerable to various pathogens such as bacteria, viruses, protozoa, fungi, and parasitic mites and subjected to heavy damages every year. There are many types of diseases that threaten honeybee colonies, well known as bacterial diseases (American Foulbrood, European Foulbrood), fungal diseases (Chalkbrood, Stonebrood), viral diseases (Sacbrood Virus, Cloudy Wing Virus, Chronic Paralysis Virus, Black Queen Cell Virus, Kashmir Bee Virus) and protozoan diseases (Nosemosis) (Allen and Ball, 1996; vanEngelsdorp and Meixner, 2010; Wolfgang and Pongthep, 2006). These diseases cause large amounts of economic losses in apiculture and agriculture of the world by affecting survival of managed and wild honeybees. To control these diseases from afflicting honeybees, present treatments typically rely on chemicals such as antibiotics, acetic acid and other chemicals (Thompson and Brown, 2001; Wolfgang and Pongthep, 2006). However, the application of chemicals in apiculture is of great concern because of chemical residues in honeybee products for human consumption (Mutinelli, 2003), and toxicity to honeybee broods and honeybee beneficial intestinal microflora (Pettis et al., 2004; Thompson et al., 2005). Therefore, there is an urgent need for development of alternative novel and sustainable disease management strategies to protect honeybee health.

3. Honeybee Gastrointestinal Bacteria

As in all animals, the gastrointestinal tract of adult honeybees is a complex ecosystem that harbors diverse microbial communities including bacteria and these bacteria play a key role in maintaining host honeybee health (Gilliam, 1997; Servin, 2004). Except for some older larvae that acquire microorganisms through ingestion of contaminated food; eggs, larvae, pupae and newly emerged adult honeybees are usually free of internal microorganisms. However, because of pollen or beebread consumption, and food exchange with other honeybees in a colony, adult honeybees become inoculated with various microbes after emergence (Gilliam and Prest, 1987). With the exception of some constant microorganisms, species composition of gastrointestinal microbes varies with honeybee age, season and geographical differences (Gilliam et al., 1988; Gilliam and Valentine, 1974). Early studies on iden-
tification of microbes associated with honeybees are restricted to only species that can be cultured and revealed that the gastrointestinal microbiota consist of Gram-positive bacteria such as *Bacillus*, *Lactobacillus*, *Bifidobacterium*, *Corynebacterium*, *Streptococcus*, *Clostridium*, and Gram-negative and Gram-variable bacteria such as *Achromobacter*, *Citrobacter*, *Enterobacter*, *Erwinia*, *Escherichia coli*, *Flavobacterium*, *Klebsiella*, *Proteus*, and *Pseudomonas* (Gilliam, 1997). However, recent culture-independent 16S rRNA sequencing and metagenomic surveys suggest that a consistent microbial community, contrary to the results of previous culture-dependent studies, dominate the honeybee digestive tract despite of different honeybee species, colonies and geographic locations (Babendreier et al., 2007; Cox-Foster et al., 2007; Jeyaprakash et al., 2003; Mohr and Tebbe, 2006). Therefore, except for some constant bacterial phylotypes, bacterial communities in the honeybee digestive tract are affected to by life stage, geographic location and species (Ahn et al., 2012; Disayathanawat et al., 2012). Variance in the composition of gut bacteria reported may also result from different methodologies and sampling strategies in independent studies. However, it is clear that honeybees harbor two different types of microorganisms, resident and transient bacteria, in their digestive tracts. Although honeybees are microorganism free at the beginning of their life cycle, transference between generations and maintenance of resident gut microbiota may result from the honeybee colony social behavior (Martinson et al., 2011). Other recent research also indicates consistent microbial composition of honeybee guts in individuals, even though emergence frequencies may differ within individuals and some distant bacterial phylotypes may exist in some individuals (Moran et al., 2012). This result together with discovery of lactic acid bacteria (LAB) of the genera *Lactobacillus* and *Bifidobacteria* originating from the honey stomach (Olofsson and Vásquez, 2008), give support to our conclusions that some bacteria associated with the honeybee digestive tract have evolved mutually with honeybees and some bacteria are acquired accidently from the environment. Moreover, colonization of honeybee resident bacteria in the digestive tract favor different organs of the gut (Martinson et al., 2012) and may serve particular functions for their host. Honeybees worldwide harbor a set of simple and distinctive gastrointestinal microbial community, whereas the genetic diversity within the bacterial species dominating the honeybee gut leads to functional diversity in host interactions, biofilm formation and nutritional digestion (Engel, 2012). Such functional diversity at the bacterial strain level and differences in colonization patterns in the gut niche may diversify and enhance the beneficial roles of the simple set of resident gastrointestinal bacteria for maintaining honeybee health.

4. Honeybee Health: Potential Role of Gastrointestinal Bacteria

The gastrointestinal tract of animals is a complex ecosystem that protects hosts from attack by pathogens through physical and chemical barriers created by the gastrointestinal epithelium (Bevins et al., 1999; Kagnoff and Eckmann, 1997). In addition, microbiota colonizing the gastrointestinal tract environment, together with epithelial cells, play important roles in normal gut function and maintaining host health (Berg, 1996). Early studies on interactions between honeybee and gastrointestinal microbes have mainly focused on the nutritional activities of bacterial communities in honeybee guts, such as functions in food fermentation and food preservation (Gilliam et al., 1989; Human and Nicolson, 2006). However, the advent of modern microbiology and methodologies have led to improvements in our understanding of many other roles for gastrointestinal microbiota such as maintaining honeybee health by combating disease pathogens (Evans and Spivak, 2010; Parker et al., 2011).

Previous studies have confirmed that bacterial probiotics can induce immune responses (Evans and Lopez, 2004) and contribute to maintaining a healthy bee colony (Patruica and Mot, 2012). There is also increasing evidence that some species of honeybee endogenous intestinal bacteria or bacterial metabolic products show antagonistic activities to pathogens that threaten honeybee health such as *Ascosphaera apis*, the causative agent of Chalkbrood disease; *Paenibacillus larvae*, the causative agent of American Foulbrood and *Nosema ceranae*, the causal microsporidian of Nosemosis (Evans and Armstrong, 2005; Forsgren et al., 2010; Sabaté et al., 2009; Yoshiyama and Kimura, 2009). Furthermore, our present studies also demonstrate that bacteria isolated from the gastrointestinal of the Japanese honeybee inhibit the growth of *Melissococcus plutonius*, the causative agent of European Foulbrood (EFB) (Wu et al., 2013). These studies on antagonistic activity to various path-
ogens indicate that gastrointestinal bacteria function in the disease defense system of honeybees by yet unknown mechanisms.

To provide further insight into the disease preventative functions of gastrointestinal microbiota, numerous mechanisms by which gastrointestinal bacteria can defend against infection with pathogens have been postulated by intensive studies. These results suggest that in addition to the competitive inhibition of the epithelial and mucosal adherence of pathogens and inhibition of epithelial invasion by pathogens, these bacteria also enhance the immune system of the host (Bibiloni et al., 2001; Evans and Lopez, 2004; Gopal et al., 2001; Nicaise et al., 1999). Moreover, gut bacteria may also show antagonistic activity against pathogens by producing various antimicrobial substances such as antimicrobial peptides/molecules, fatty acids and H$_2$O$_2$ (Klaenhammer, 1993; Servin, 2004). Although little is known about how members of the intestinal microbiota interact with honeybees to establish mutually beneficial relationships and what mechanisms function in their defense system, gastrointestinal microbiota attract great attention because of their potential roles in the protection of honeybee health and development of honeybee disease management strategies.

5. Conclusion

In conclusion, honeybees harbor distinct bacterial communities in their digestive tracts and take advantage of these gastrointestinal bacteria despite some bacteria are disease causing. Besides functions related to nutritional consumption of plant pollen or nectar, recent findings reveal crucial roles of bacterial communities associated with honeybees in enhancing the immune system and disease prevention. This suggests that the gut bacterial community structure may become an indicator of honeybee health and maintaining the balance of these gut bacteria is critical for sustaining honeybee health and vigor. In spite that more research is needed to clearly understand the microbial defense activity mechanisms of honeybees, we can conclude that gut microbial communities provide an important novel tool to improve disease management strategies and contribute to the development of modern sustainable agriculture.

Acknowledgment

This work was supported by a grant from the Programme for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry.

References

Evans, J.D., Armstrong, T.N., 2005. Inhibition of the American foulbrood bacterium, Paenibacillus larvae larvae, by bac-
Stokstad, E., 2007. The case of the empty hives. Science 316,

vanEngelsdorp, D., Meixner, M.D., 2010. A historical review of managed honeybee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 103, s80–s95.

