Utilization of soybean curd residue for polysaccharides by *Wolfiporia extensa* (Peck) Ginns and the antioxidant activities in vitro

<table>
<thead>
<tr>
<th>著者別名</th>
<th>李 書紅 · 楊 英男 · 中方 張 振亜</th>
</tr>
</thead>
<tbody>
<tr>
<td>種類</td>
<td>台灣化學工程學會會誌</td>
</tr>
<tr>
<td>年度</td>
<td>2014-01</td>
</tr>
<tr>
<td>巻/号</td>
<td>45/1</td>
</tr>
<tr>
<td>頁数</td>
<td>6-11</td>
</tr>
<tr>
<td>URL</td>
<td><a href="http://hdl.handle.net/2241/00121472">http://hdl.handle.net/2241/00121472</a></td>
</tr>
<tr>
<td>doi</td>
<td>10.1016/j.jtice.2013.05.019</td>
</tr>
</tbody>
</table>

(C) 2013 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. NOTICE: this is the author’s version of a work that was accepted for publication in Journal of the Taiwan Institute of Chemical Engineers. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of the Taiwan Institute of Chemical Engineers, 45, 1, 2014 DOI:10.1016/j.jtice.2013.05.019

**著者別名**

<table>
<thead>
<tr>
<th>著者名</th>
<th>李 書紅 · 楊 英男 · 中方 張 振亜</th>
</tr>
</thead>
</table>

**篇名**

Utilization of soybean curd residue for polysaccharides by *Wolfiporia extensa* (Peck) Ginns and the antioxidant activities in vitro

**摘要**

本文旨在探讨利用大豆渣作为原料制备多糖的方法，并考察其在体外抗氧活性。研究发现，通过浸泡和干燥处理，可以有效地提取多糖。所制备的多糖展现出良好的抗氧化性能，有助于开发新的健康食品。
Utilization of soybean curd residue for polysaccharides by *Wolfiporia extensa (Peck) Ginns* and the antioxidant activities in vitro

Shuhong Li, Linbo Wang, Chunfeng Song, Xuansheng Hu, Hongyi Sun, Yingnan Yang, Zhongfang Lei, Zhenya Zhang*

Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8572, Japan

* Corresponding author. Tel. /Fax: +81 0298-53-4712.
E-mail address: zhang.zhenya.fu@u.tsukuba.ac.jp
Abstract: To reduce nutrient cost and improve the production of polysaccharides by *Wolfiporia extensa* (Peck) Ginns (F.A. Wolf), soybean curd residue (SCR), a food waste, was chosen as the nutrient source in this study. The objective of this research is to determine optimum culture conditions for solid state fermentative production of polysaccharides and evaluate the antioxidant activities. Response surface methodology (RSM) was employed to optimize the fermentation conditions of *F.A. Wolf* for the enhancement of polysaccharides. The optimal conditions were obtained by response surface methodology as follows: fermentation temperature 23.7 °C, fermentation time 7.5 days, and inoculum size 15.5 mL. Under optimized conditions, the polysaccharides yield reached 88.93±1.87 mg/g, which was in close agreement with values predicted by the mathematical models. Furthermore, the polysaccharides exhibited positive antioxidant activities. This research provides references for the large-scale production of polysaccharides by *F.A. Wolf* and points to a new direction for SCR utilization.

Keyword: *Wolfiporia extensa*, Polysaccharides, Soybean curd residue, Response surface methodology, Antioxidant activity
1. Introduction

Soybean is one of the most important legumes in the world, particularly in Asian countries like Japan. In 2010, the annual output of soybean exceeded 261 million tons. A FAO report indicates Japan imported soybean amounting to 3.5 million tons in 2009 [1]. Soybean curd residue (SCR) is the main surplus material from soybean products and it is often regarded as waste. About 1.1 kg of fresh SCR is produced from every kilogram of soybeans processed into soymilk or tofu [2]. In Japan, about 800,000 tons of SCR are disposed of annually as by-products of tofu production and the disposal costs around 16 billion yen per annum [3]. SCR is a loose material consisting of a good source of nutrients, including protein, oil, dietary fibre, minerals, along with un-specified monosaccharides and oligosaccharides [4-6]. It is a suitable supporter and carrier because of its porosity, nutrition and cheapness. There have been several reports on the reuse of SCR for fermentation products, such as $\beta$-fructofuranosidase, ganoderma lucidum, bacillus subtilis $B_2$ and polysaccharides [7-10]. Current polysaccharides production from medicinal fungi is mainly from submerged culture and the fruit body. Submerged fermentation, not only has the problem of more energy-consumption during extraction, but also water-consumption and low yield [11-12]. Extracting polysaccharides from a fruit body takes more than 3 months, which is high cost and time-consuming. Compared with polysaccharides obtained from fruit bodies and mycelia, polysaccharides fermented by SCR have the advantages of waste minimization, time efficiency and high production levels at low cost.
Wolfiporia extensa (Peck) Ginns (F.A. Wolf) is a popular fungus of the family Polyporaceae that grows on the roots of old, dead pine trees. It has been used in traditional Chinese medicine for many centuries [13]. Polysaccharides isolated from the mycelia of F.A. Wolf have recently attracted considerable attention due to their various physiological properties, such as antioxidant, antitumor, antiinflammatory, hypoglycemic, hypocholesterolemic and immunostimulating activities [14-17].

To date, few reports are available in the literature regarding the optimization of fermentation conditions for polysaccharides production by F.A. Wolf using SCR as the main nutrient medium. According to previous experiments, the accumulation of polysaccharides by F.A. Wolf using SCR is strongly influenced by fermentation conditions, including fermentation temperature, fermentation time and inoculum size. Therefore, further study on the optimal fermentation conditions for polysaccharides is worthwhile. The aim of this work is to apply statistical methods to optimize the fermentation conditions for polysaccharides production by F.A. Wolf using SCR and evaluate the antioxidant activities of polysaccharides.

2. Materials and methods

2.1. Chemicals and reagents

Ascorbic acid, hydrogen peroxide, chloride ferric, potassium bromide, sodium salicylate, ethanol, potassium persulphate, ethylene diamine tetraacetic acid (EDTA), glucose, potato extract, agar, monopotassium phosphate and magnesium sulfate heptahydrate were purchased from Wako Pure Chemical (Osaka, Japan). 2,
2’-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), was purchased from
Sigma Aldrich, Inc. (Saint Louis, MO, USA). All other chemical reagents were of
analytical grade.

2.2. Pre-treatment of SCR

Fresh SCR (moisture content 80 %) was obtained from Inamoto Co., Ltd. (Tsukuba,
Japan). Residual water was removed by drying at 60 °C. SCR with a particle size of 600
μm was used. In this study all SCR was obtained from the same batch in the
manufacturing process.

2.3. Strain and culture media

The strain of *Wolfiporia extensa* (Peck) Ginns ACCC 50876 used in this study was
obtained from the Agricultural Culture Collection of China. The stock culture was
maintained on potato dextrose agar (PDA) slants and subcultured every three months.
The slants were incubated at 25 °C for 10 days. The PDA consisted of the following
components: glucose 2.0 %, potato extract 0.4 %, agar 2.0 %, KH₂PO₄ 0.3 %, and
MgSO₄·7H₂O 0.15 %.

2.4. Inoculum preparation

For preparation of the inoculum, the mycelia of *F.A. Wolf* was transferred from a
slant into a sterile petri-dish (diameter: 100 mm) containing 20 mL of PDA. It was
incubated at 25 °C for 6 days. The 100 mL liquid culture was undertaken in a 300 mL
flask containing four units of mycelial agar 5 mm × 5 mm square obtained using a
self-designed cutter. Then it was put in a rotary shaker at 120 rpm at 25 °C for 5 days.
and activated in the liquid medium. The flask of the liquid culture medium was composed of the following components: 2.0 %, potato extract 0.4 %, KH$_2$PO$_4$ 0.3 %, and MgSO$_4$·7H$_2$O 0.15 %. Then the seed in the liquid culture was transferred to the solid culture by pipette. The solid-state culture experiment was performed in a 200 mL flask with 7.0 g SCR and 0.5 g rice bran, (moisture content 75 %) under different culture conditions. All of the media were autoclaved at 121 °C for 15 min.

2.5. Analytical methods

2.5.1. Determination of total sugars

Treatment of the fermented SCR was according to a procedure from the literature with a few modifications [10]. The fermented SCR from different cultured conditions were harvested and dried in a convection oven at 60 °C. Then it was ground into powder and passed through a 60 mesh. The crushed powder (500 mg) was mixed with 15 mL distilled water and extracted under boiling water for two hours. The carbohydrate was precipitated by adding fourfold volumes of 99.5 % ethanol and stored at 4.0 °C overnight. Then the total sugars were determined by the phenol-sulfuric acid method [18]. The results were expressed as mg of glucose equivalent per g of fermented SCR.

2.5.2. Determination of reducing sugars

Reducing sugars content was analyzed by dinitrosalicylic (DNS) colorimetric method [19], using D-glucose as the standard. For each 0.4 mL of the sample 0.8 mL of DNS reagent was added. The mixture was heated in boiling water for 2 min and then cooled to room temperature in a water bath. After this 4.8 mL deionized water was added. The
absorbance was measured at 540 nm. The concentration of total reducing sugars was
calculated based on a standard curve obtained with D-glucose.

2.5.3. **Determination of polysaccharides**

The yield of polysaccharides was defined as the amount of total sugars minus the
amount of reducing sugars.

2.5.4. **Fourier-transform infrared spectrometric analysis**

FT-IR spectrum was recorded on a Jasco FTIR 3000 spectrometer (Jasco, Wakayama, Japan). The dried sample was ground with potassium bromide (KBr) powder and
pressed into pellets for spectrometric measurement at a frequency range of
4000-400 cm$^{-1}$.

2.6. **Optimization for polysaccharides production**

Based on results of the previous test, fermentation temperature, fermentation time and
inoculum size were chosen for the optimization of polysaccharides by Box-Behnken
design. The experimental design including name, symbol code, and level of the
variables are shown in Tables 1 and 2. The test factors were coded according to the
following equation (1):

$$x_i = \frac{X_i - X_0}{\Delta X_i}$$  \hspace{1cm} (1)

where $x_i$ is the coded value of the $i$th independent variable, $X_i$ is the uncode value of the
$i$th independent variable, $X_0$ is the uncoded value of the $i$th independent variable at the
centre point and $\Delta X_i$ is the step change value.

2.7. **Extraction of polysaccharides from fermented SCR**
Fermented SCR at optimal condition was harvested and dried in a convection oven at 60 °C. The obtained product was sieved with a 60 mesh sieve. The sieved powder 1.0 g was added to 30.0 mL distilled water and extracted under boiling water for two hours. After being treated with sevage reagent and dialyzed, the water-soluble polysaccharides were precipitated by adding fourfold volumes of 99.5 % ethanol. The precipitated polysaccharides were collected after being centrifuged at 7500×g for 15 min and lyophilized to powder form, which was applied to detect the antioxidant activities in vitro.

2.8. Assay for antioxidant activities of polysaccharides

2.8.1. Hydroxyl radical scavenging activity

Hydroxyl radical scavenging activity was measured according to the procedures of Winterbourn and Sutton with a few modifications [20]. The reaction mixture (2.5 mL) contained 0.5 mL of FeSO₄ (1.5 mM), 0.35 mL of H₂O₂ (6.0 mM), 0.15 mL of sodium salicylate (20.0 mM), and 1.0 mL of different concentrations of polysaccharides. Ascorbic acid was used as the positive control. After incubation for 1 h at 37 °C, the absorbance of the formed hydroxylated salicylate complex was measured at 562 nm. The percentage scavenging effect was calculated using equation (2):

\[
\text{HO}^\cdot \text{scavenged (\%)} = \left[1 - \frac{A_1 - A_2}{A_0}\right] \times 100\%
\]

(2)

where \(A_0\) is the absorbance of the solvent control, \(A_1\) is the absorbance of the sample or ascorbic acid and \(A_2\) is the absorbance of the reagent blank without sodium salicylate.

2.8.2. Ferrous metal ions chelating activity
Ferrous metal ions chelating activities of the polysaccharides were measured according to a procedure from the literature with a few modifications [21]. The sample or EDTA solution (1.0 mL) was mixed with 50 µL of ferrous chloride (2.0 mM) and 0.2 mL of ferrozine (5.0 mM), shaken well, and allowed to settle for 10 min at room temperature. The absorbance of the mixture was determined at 562 nm with EDTA as the positive control. The ion-chelating activity was calculated using equation (3):

\[
\text{Chelating rate (\%)} = \left[1 - \frac{A_1 - A_2}{A_0}\right] \times 100\%
\]

where \(A_0\) is the absorbance of the control (without sample) and \(A_1\) is the absorbance in the presence of the sample and \(A_2\) is the absorbance without ferrozine.

2.8.3. ABTS radical scavenging assay

The radical scavenging activities of the polysaccharides against radical cations (ABTS\(^+\)) were measured using the methods of Pellegrini et al. with some modifications [22]. ABTS was dissolved in distilled water at a final concentration of 7.0 mM. ABTS\(^+\) was produced by reacting 7.0 mmol/L of ABTS\(^+\) solution with 2.45 mmol/L of potassium persulphate, and the mixture was kept in the dark at room temperature for 16 h. At the moment of use, the ABTS\(^+\) solution was diluted with ethanol to an absorbance of 0.70±0.02 at 734 nm.

Samples (0.15 mL) of various concentrations (0.16-10.00 mg/mL) were mixed with 2.85 mL of ABTS\(^+\) solution and mixed vigorously. Finally, the absorbance was measured at 734 nm after incubation at room temperature for 10 minutes. The
scavenging activity of the ABTS free radicals was calculated using the following equation (4):

\[
\text{ABTS scavenging activity (\%) =} \left[1 - \frac{A_1}{A_0}\right] \times 100% \tag{4}
\]

where \(A_0\) is the absorbance of control without sample and \(A_1\) is the test sample without ABTS\(^+\).

2.9. Statistical analysis

All experiments were carried out in triplicate. Data were processed and analyzed using Design Expert Software (version 8.0.6, Stat-Ease. Inc., Minneapolis, USA). P-values below 0.05 were regarded as statistically significant.

3. Results and discussion

3.1 Optimization of the yield of polysaccharides

For prediction of the optimal point, a second-order polynomial function was fitted to correlate the relationship between independent variables and response. A Box-Behnken design with 3 levels for all the 3 factors: fermentation temperature (\(X_1\)), fermentation time (\(X_2\)) and inoculum size (\(X_3\)) were used for this purpose. A total of 17 experiments with associated combinations were undertaken. The range of the variables is given in Table 1. The experimental design and the results obtained from experiments are shown in Table 2. The results of these experiments were fitted with a second order polynomial equation. Judging from the regression coefficients and considering the significant terms, the fitted equation (in terms of coded values) for predicting polysaccharides production (\(Y\)) is given below:
where $Y$ is the predicted response that is the yield of polysaccharides, and $x_1$, is fermentation temperature; $x_2$, the fermentation time and $x_3$, the inoculum size. Table 3 shows the verification of the model based on the results of an F-test and analysis of variance.

The value of probability ($P$) was less than 0.0001, which indicates that the selected factors and their ranges have significant influence on the yield of polysaccharides. From Tables 2 and 3, the coefficient of determination ($R^2=0.99$) shows a good fit and the accuracy of the model between the predicted and actual responses [23-25]. Regression analysis of the data shows that the value of the adjusted determination coefficient ($R^2_{Adj} = 0.99$) was also high enough to indicate the significance of the model. The accuracy of the model is also verified by the data in Table 2, in which the obtained polysaccharides yields is almost equal to the predicted values. The $P$-values are used not only as a tool to check the significance of each coefficient but also an indication of the interaction strength between each independent variable. The smaller the $P$-values, the larger are the significance of the corresponding coefficient. It can be seen from Table 3 that all regression coefficients are significant except for the interactions of two cross-product coefficients between fermentation time and inoculum size. When their absolute values were compared, the individual effects of fermentation time and fermentation temperature were stronger than inoculum size. Considering the quadratic coefficient, the square of fermentation time has the strongest effect on polysaccharides production.
3D response surfaces plots were employed to determine the interaction of the fermentation conditions and the optimum levels that have the most significant effect on polysaccharides production. The response surfaces plots based on the model are depicted in Fig. 1, which show the interactions between two variables by maintaining the other variable at zero level for polysaccharides production. The main goal of response surface is to hunt efficiently the optimum values of the variables so that the response is maximized. It is clear from Fig. 1 that the minimum response of polysaccharides production (45.4 mg/g) occurred when time was at its lowest level. Polysaccharides production increased considerably as time increased, indicating that time in polysaccharides production has a significant effect on the responses. As the time increased, the responses were maximal near the median temperature. Fig. 2 demonstrates the effects of temperature and inoculum size on polysaccharides production. It could be observed that the polysaccharides production varied significantly with the variation in temperature. It is evident that the polysaccharides yield significantly increased with increasing temperature up to about 24 °C but decreased sharply beyond this, reaching its maximum yield at 22.6-24.6 °C. However, inoculum size didn’t show a similar significant effect on the production of polysaccharides within the tested range of the fermentation temperature. Polysaccharides yields increased gradually when inoculum size increased from 10 to 15 mL, but negligibly after 15 mL. As can be seen from Fig. 3, the polysaccharides yield was significantly affected by fermentation time. Production increased when time increased up to 7 days but decreased...
sharply beyond this. This observation can be attributed to the autolysis of mycelia as
time increases. However, the effect of inoculum size on the production of
polysaccharides is insensitive within the tested range. The optimum ranges of
fermentation time and inoculum size for the maximum yield of polysaccharides lie
between 7.1-7.5 days, and 14.1-16.3 mL, respectively.

3.2. Validation of the models

By solving the inverse matrix (from Eq. (5)) using Design Expert software, the
optimum values of the test variables in uncoded units were obtained, i.e. fermentation
temperature 23.7 °C, fermentation time 7.5 days, and inoculum size 15.5 mL,
respectively. The predicted optimal polysaccharides production corresponding to these
values was 87.98 mg/g. To confirm the accuracy of the model for predicting maximal
polysaccharides production, additional experiments in triplicate using these optimized
fermentation conditions were carried out. These triplicate experiments produced
polysaccharides yield of 88.93±1.87 mg/g, confirming a good fit between the predicted
and experimental values and also the validity of the model. The polysaccharides yield
obtained after optimization increased to 3.54 folds. It is higher than 13.8 mg/g obtained
from the fruit body of *F.A. Wolf* [17]. As a result, the models developed were
considered to be accurate and reliable for predicting the production of polysaccharides
by *F.A. Wolf ACCC 50876* using SCR as the nutrient medium.

3.3. A Fourier transform infrared spectroscopy (FT-IR) of polysaccharides

The polysaccharides were characterized by FT-IR spectroscopy as shown in Fig. 4.
The strong bands at 3000-3500 cm\(^{-1}\) are characteristic of glycosidic structures and are related to OH stretching. The sample exhibited a specific absorption peak at 1720 cm\(^{-1}\), suggesting the presence of uronic acid [26]. It exhibited the characteristic absorption of polysaccharides at 1650 and 1400 cm\(^{-1}\) [27]. The C–O–C stretching has characteristic absorption at 1124 cm\(^{-1}\). The band at 890 cm\(^{-1}\) is characteristic for the β-glycosidic linkage [28]. It has been reported that the β-glycosidic linkage is the essential structural feature for immunostimulatory and antitumoral effects [29-31]. The absorption peak at 800 cm\(^{-1}\) for the sample was the characteristic absorption of mannose [32].

3.4. Antioxidant activities in vitro of polysaccharides

Antioxidant activities have been attributed to various reactions and mechanisms, such as radical scavenging, reductive capacity, prevention of chain initiation, binding of transition metal ion catalysts, etc. [33, 34]. Polysaccharides isolated from *Pleurotus ostreatus* and *Inonotus obliquus* exhibited significant antioxidant effects on scavenging DPPH and hydroxyl radical [35, 36]. To investigate the antioxidant activities of the polysaccharides, antioxidant properties based on ABTS radical-scavenging activity, ferrous metal ions chelating activity and hydroxyl radical scavenging activity assays were carried out. The antioxidant results of polysaccharides are described in Figs. 5-7.

It is important to remove hydroxyl radicals for antioxidant defense because hydroxyl radicals are one of the reactive oxygen species generated in the body. As shown in Fig. 5, the polysaccharides exhibited a concentration-dependent HO\(^{\cdot}\) scavenging activity. Polysaccharides showed higher hydroxyl scavenging activity than that of the ascorbic
acid under the low the concentrations. The polysaccharides exhibited 93.88 % of the hydroxyl radical scavenging activity at a concentration of 2.5 mg/mL, approximately equal to that of 2.5 mg/mL Vc (100 %). Moreover, the hydroxyl radical scavenging activity of polysaccharides was superior to those found in other fermented soybean products [37].

Metal chelating capacity is an index to evaluate antioxidant behavior since it reduces the concentration of transition metals that may act as catalysts to generate the first few radicals and initiate the radical-mediated oxidative chain reactions in biological or food systems. The ferrous metal ions chelating activity of polysaccharides is shown in Fig. 6. Compared with EDTA, the chelating ability of the samples on ferrous ion was weaker. The Fe$^{2+}$-chelating activity showed no significant increase with the increase in polysaccharides concentration and just reached 21.65 % at 10 mg/mL. The result was consistent with soybean products fermented using Bacillus subtilis [38].

ABTS assay is often used in evaluating the total antioxidant power of single compound and complex mixtures of various plants [39]. In our experiment, the scavenging ability of the polysaccharides on ABTS free radicals is shown in Fig. 7 and compared with ascorbic acid as control standards. Their scavenging powers correlated well with increasing concentrations, increasing from 22.63 % to 100 %, when the concentration of the polysaccharides increased from 0.16 to 10.00 mg/mL. The results indicate that the obtained polysaccharides had strong potential ABTS radical scavenging activity.
4. Conclusions

In conclusion, optimization of the fermentation process is an efficient technology of SCR for polysaccharides. An optimized fermentation condition was obtained at: fermentation temperature 23.7 °C, fermentation time 7.5 days, and inoculum size 15.5 mL. Under optimized conditions, the polysaccharides yield reached 88.93±1.87 mg/g. Further experiments showed that the experimental values agreed with the predicted values well. The obtained polysaccharides demonstrated positive antioxidant activities. The results obtained will provide a reference for the large-scale production of polysaccharides by F.A. Wolf and point to a new direction for the utilization of SCR.

References


[38] Moktan B, Saha J, Sarkar PK. Antioxidant activities of soybean as affected by *Bacillus*-fermentation to kinema. Food Res Int 2008; 41:586-593.

Figures Captions:

Fig. 1. Response surface plot for the yield of polysaccharides by *P. cocos* in terms of the effects of time and temperature.

Fig. 2. Response surface plot for the yield of polysaccharides by *P. cocos* in terms of temperature and inoculum size.

Fig. 3. Response surface plot for the yield of polysaccharides by *P. cocos* in terms of inoculum size and time.

Fig. 4. FT-IR spectrum of the polysaccharides.

Fig. 5. Hydroxyl radical scavenging activity of polysaccharides.

Fig. 6. Ferrous metal ions chelating activity of polysaccharides.

Fig. 7. Inhibition effects of polysaccharides on the stable ABTS free radicals.
Fig. 1. Response surface plot for the yield of polysaccharides by *P. cocos* in terms of the effects of time and temperature.

Fig. 2. Response surface plot for the yield of polysaccharides by *P. cocos* in terms of temperature and inoculum size.
**Fig. 3.** Response surface plot for the yield of polysaccharides by *P. cocos* in terms of inoculum size and time.

**Fig. 4.** FT-IR spectrum of the polysaccharides.
Fig. 5. Hydroxyl radical scavenging activity of polysaccharides.

Fig. 6. Ferrous metal ions chelating activity of polysaccharides.
Fig. 7. Inhibition effects of polysaccharides on the stable ABTS free radicals.
Table Captions:

Table 1 Levels and codes of variables in the Box-Behnken design.

Table 2 Experimental and predicted values of polysaccharides based on Box-Behnken design.

Table 3 The result of analysis of variance (ANOVA) for the selected model.

**Table 1** Levels and codes of variables in the Box-Behnken design.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Symbol</th>
<th>Uncoded</th>
<th>Coded</th>
<th>Coded and uncode levels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>Fermentation temperature (°C)</td>
<td>$X_1$</td>
<td>$x_1$</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Fermentation time (d)</td>
<td>$X_2$</td>
<td>$x_2$</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Inoculum size (mL)</td>
<td>$X_3$</td>
<td>$x_3$</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>
Table 2 Experimental and predicted values of polysaccharides based on Box-Behnken design.

<table>
<thead>
<tr>
<th>Runs</th>
<th>X1: Fermentation temperature</th>
<th>X2: Fermentation time</th>
<th>X3: Inoculum size</th>
<th>Polysaccharides content (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1 (20)</td>
<td>0 (7)</td>
<td>1 (20)</td>
<td>74.41±0.37</td>
</tr>
<tr>
<td>2</td>
<td>0 (25)</td>
<td>1 (9)</td>
<td>-1 (10)</td>
<td>62.63±1.20</td>
</tr>
<tr>
<td>3</td>
<td>-1 (20)</td>
<td>1 (9)</td>
<td>0 (15)</td>
<td>72.22±0.67</td>
</tr>
<tr>
<td>4</td>
<td>0 (25)</td>
<td>0 (7)</td>
<td>0 (15)</td>
<td>86.25±1.32</td>
</tr>
<tr>
<td>5</td>
<td>0 (25)</td>
<td>-1 (5)</td>
<td>1 (20)</td>
<td>54.54±0.81</td>
</tr>
<tr>
<td>6</td>
<td>-1 (20)</td>
<td>-1 (5)</td>
<td>0 (15)</td>
<td>51.49±1.07</td>
</tr>
<tr>
<td>7</td>
<td>0 (25)</td>
<td>0 (7)</td>
<td>0 (15)</td>
<td>86.81±1.23</td>
</tr>
<tr>
<td>8</td>
<td>1 (30)</td>
<td>0 (7)</td>
<td>-1 (10)</td>
<td>61.01±0.54</td>
</tr>
<tr>
<td>9</td>
<td>1 (30)</td>
<td>0 (7)</td>
<td>1 (20)</td>
<td>69.40±0.74</td>
</tr>
<tr>
<td>10</td>
<td>0 (25)</td>
<td>1 (9)</td>
<td>1 (20)</td>
<td>67.06±1.32</td>
</tr>
<tr>
<td>11</td>
<td>-1(20)</td>
<td>0 (7)</td>
<td>-1 (10)</td>
<td>75.56±0.69</td>
</tr>
<tr>
<td>12</td>
<td>0 (25)</td>
<td>0 (7)</td>
<td>0 (15)</td>
<td>85.53±1.58</td>
</tr>
<tr>
<td>13</td>
<td>0 (25)</td>
<td>-1 (5)</td>
<td>-1 (10)</td>
<td>53.33±1.25</td>
</tr>
<tr>
<td>14</td>
<td>1 (30)</td>
<td>-1 (5)</td>
<td>0 (15)</td>
<td>45.40±0.45</td>
</tr>
<tr>
<td>15</td>
<td>1 (30)</td>
<td>1 (9)</td>
<td>0 (15)</td>
<td>51.01±0.93</td>
</tr>
<tr>
<td>16</td>
<td>0 (25)</td>
<td>0 (7)</td>
<td>0 (15)</td>
<td>87.65±0.88</td>
</tr>
<tr>
<td>17</td>
<td>0 (25)</td>
<td>0 (7)</td>
<td>0 (15)</td>
<td>86.86±0.20</td>
</tr>
</tbody>
</table>

The experimental results were means ± standard deviation (SD) of triple determinations.
Table 3 The result of analysis of variance (ANOVA) for the selected model.

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of squares</th>
<th>Degree of freedom</th>
<th>Mean square</th>
<th>F-value</th>
<th>Probability &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>3374.48</td>
<td>9</td>
<td>374.94</td>
<td>204.49</td>
<td>&lt; 0.0001</td>
</tr>
<tr>
<td>$X_1$</td>
<td>274.52</td>
<td>1</td>
<td>274.52</td>
<td>149.72</td>
<td>&lt; 0.0001</td>
</tr>
<tr>
<td>$X_2$</td>
<td>289.89</td>
<td>1</td>
<td>289.89</td>
<td>158.11</td>
<td>&lt; 0.0001</td>
</tr>
<tr>
<td>$X_3$</td>
<td>20.74</td>
<td>1</td>
<td>20.74</td>
<td>11.31</td>
<td>0.012</td>
</tr>
<tr>
<td>$X_1X_2$</td>
<td>57.2</td>
<td>1</td>
<td>57.2</td>
<td>31.2</td>
<td>0.0008</td>
</tr>
<tr>
<td>$X_1X_3$</td>
<td>22.75</td>
<td>1</td>
<td>22.75</td>
<td>12.41</td>
<td>0.0097</td>
</tr>
<tr>
<td>$X_2X_3$</td>
<td>2.6</td>
<td>1</td>
<td>2.6</td>
<td>1.42</td>
<td>0.2721</td>
</tr>
<tr>
<td>$X_1^2$</td>
<td>459.08</td>
<td>1</td>
<td>459.08</td>
<td>250.38</td>
<td>&lt; 0.0001</td>
</tr>
<tr>
<td>$X_2^2$</td>
<td>1882.88</td>
<td>1</td>
<td>1882.88</td>
<td>1026.91</td>
<td>&lt; 0.0001</td>
</tr>
<tr>
<td>$X_3^2$</td>
<td>155.79</td>
<td>1</td>
<td>155.79</td>
<td>84.97</td>
<td>&lt; 0.0001</td>
</tr>
<tr>
<td>Residual</td>
<td>12.83</td>
<td>7</td>
<td>1.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of fit</td>
<td>10.34</td>
<td>3</td>
<td>3.45</td>
<td>5.33</td>
<td>0.0611</td>
</tr>
<tr>
<td>Pure error</td>
<td>2.5</td>
<td>4</td>
<td>0.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>3387.32</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$R^2 = 0.99$  $R^2_{Adj} = 0.99$