The radio-frequency impedance of individual intrinsic Josephson junctions

<table>
<thead>
<tr>
<th>著者別名</th>
<th>門脇 和男</th>
</tr>
</thead>
<tbody>
<tr>
<td>作者名</td>
<td>門脇 和男</td>
</tr>
<tr>
<td>著作権</td>
<td>門脇 和男</td>
</tr>
<tr>
<td>権利</td>
<td>門脇 和男</td>
</tr>
</tbody>
</table>

doi: 10.1063/1.3275741
The radio-frequency impedance of individual intrinsic Josephson junctions

Johannes Leiner,1,a) Sajid Saleem,1 J. C. Fenton,1 Takashi Yamamoto,2 Kazuo Kadowaki,2 and P. A. Warburton1

1London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, United Kingdom
2Institute of Materials Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

(Received 27 September 2009; accepted 25 November 2009; published online 23 December 2009)

We have measured the response of an array of Bi2Sr2CaCu2O8+δ intrinsic Josephson junctions to irradiation at 3 GHz. By measuring the dependence of the switching current upon the radio-frequency current for five of the junctions in the array we show quantitatively that the junctions have identical impedances at 3 GHz, this impedance being given by the inverse of the slope of the current-voltage characteristics. © 2009 American Institute of Physics.

[doi:10.1063/1.3275741]

Bi2Sr2CaCu2O8+δ (BSCCO) intrinsic Josephson junctions1 have been recently shown to be coherent tunable terahertz sources with narrow linewidth.2,3 Although the details of the mechanism of coherent THz emission are controversial,4,5 there is intense progress toward increasing the emitted power from intrinsic Josephson junction (IJJ) arrays to the mW level. This is required by many applications such as terahertz spectroscopy and imaging in the pharmaceutical and biological sciences, sensing of hazardous chemicals, detection of concealed weapons, noninvasive medical diagnostics, and high-bandwidth telecommunications.6,7 The junction uniformity plays a crucial role in determining the number of junctions which oscillate coherently and hence the total emitted power and linewidth.8,9 Many previous studies have shown that BSCCO IJJs have highly uniform dc properties.10,11 Here we introduce a technique in order to demonstrate that BSCCO IJJs also have highly uniform radio-frequency (rf) properties—specifically the junctions have mutually identical rf impedances in the voltage (oscillatory) state.

Single BSCCO crystals were grown by using the traveling-solvent floating-zone technique.12 The crystal was cut into platelets of approximate dimensions 3 mm × 200 μm × 20 μm (in the a-, b-, and c-directions, respectively), which were glued on top of an MgO substrate using polyimide. The crystal was cleaved in an argon-filled glove box in order to reduce the height in the c-direction to ~3 μm. Four silver contacts of thickness 90 nm were evaporated through a mask onto the freshly cleared surface. The resulting contact resistance was ~5 Ω.

The IJJ stack structure was patterned by using a 30 keV focused gallium ion beam. In order to narrow down the crystal from ~200 to 1 μm in width, we oriented the c-axis parallel to the ion-beam and milled with an ion-beam current of 2 nA. This was followed by a “polishing” mill with currents down to 50 pA so as to minimize gallium implantation. The sample was then reoriented so that the ion-beam was approximately perpendicular to the c-axis. Two slots, 1.4 μm apart, were milled into the crystal. The resulting IJJ stack was 1.4 μm × 0.85 μm in cross-section and ~300 nm in the c-direction as shown in Fig. 1. Since the c-axis separation of each intrinsic junction is ~1.5 nm, the array contains of order N=200 junctions.

The sample was mounted onto the copper finger of a custom-built measurement probe. This was inserted into a He-4 storage dewar, with all measurements being carried out at 4.2 K. The IV-characteristics (IVCs) were measured by manually sweeping the bias current. The voltage across the junction was measured in a four-terminal configuration. An HP 8671B synthesized continuous-wave rf generator was used to irradiate the IJJ stack at a frequency of 3.0 GHz. A dipole antenna, formed by exposing the end of the inner core of a semirigid microwave coaxial cable, was fixed ~1 cm above the sample.

In Fig. 2 the IVC with no rf irradiation is shown. The IVC is multibranched and hysteric. The switching current $I_{SW}(n)$ on the nth quasiparticle branch (1≤n≤4) is rather uniform $I_{SW}(1)~53~μA$, $I_{SW}(2)~52~μA$, $I_{SW}(3)~50~μA$, and $I_{SW}(4)~49~μA$, confirming the uniformity of the c-axis critical current in the IJJ stack. The slight suppression of the switching current as the branch number n increases is probably due to Ohmic heating. The switching current on the supercurrent branch (n=0) is larger (66 μA) as is commonly observed in measurements of IJJ stacks.11,13 From fits to switching current distributions (not shown) we find the unfluctuated critical current to be $I_c=80~μA$, and hence the plasma frequency, $f_p=(I_c/2\pi\Phi_0C)^{1/2}$, is approximately 300 GHz. (Here we assume that the relative dielectric constant of the spacer layer in each IJJ is equal to 10; Φ_0 is the flux quantum.)

The dependence of the switching currents of each branch on the rf current at $f=3$ GHz was extracted from the IVCs and is shown in Fig. 3(a). Since $f\ll f_p$, the effect of the rf current is to adiabatically modulate the depth of the wash-
board potential well at a frequency f. This leads to an exponential increase in the escape rate from the zero-voltage state to the voltage state and hence to a decrease in I_{SW}. The degree of suppression however can be seen to be very much stronger for the supercurrent branch than for the quasiparticle branches. A qualitatively similar effect has also been observed for $\text{Tl}_3\text{Ba}_2\text{Ca}_2\text{Cu}_3\text{O}_y$ intrinsic junctions.14

It is not obvious that the very different response of the five junctions to rf irradiation can be reconciled with a model in which the junctions are identical. We now show quantitatively, however, that this differing rf response can be explained by the fact that the rf impedance of an array of identical junctions changes as the number of junctions in the voltage state changes. The analysis method which we introduce here is formally equivalent to the method of Klushin et al.15 With our technique, however, no prior knowledge of the $I_{c}R_N$ product of the junctions is required. (R_N is the normal-state junction resistance.) This makes it particularly suited to analysis of JJ\textsubscript{A} arrays containing many junctions, for which the measurement of R_N may be nontrivial.

We use an rf current-source model to determine the rf current flowing through the junction array,16,17 The model, shown in Fig. 3(b), includes the impedance of the environment, Z_{env} at 3 GHz. Z_{env} models the combined impedance of the rf cables, the antenna, and the free space between the antenna and the junction array, as seen by the rf source. It is likely to be of order 100 Ω. We assume that all $N=200$ junctions in the array have identical rf impedances, Z_{VS}, in the voltage state and identical rf impedances, Z_{ZV}, in the zero-voltage state. When n junctions are in the voltage state the rf current through the array is given by

$$i_{\text{rf}} = i_{\text{rf}} \frac{Z_{\text{env}}}{Z_{\text{env}} + (N-n)Z_{\text{ZV}} + nZ_{\text{VS}}},$$

(1)

where i_{rf} is the source rf current. We now define $\overline{i_{\text{rf}}}(n)$ as the normalized rf source current required to drive a fixed rf current, i_{rf}, through the junction array when n junctions are in the voltage state

$$\overline{i_{\text{rf}}}(n) = \frac{i_{\text{rf}}(n)}{i_{\text{rf}}(0)} = \frac{Z_{\text{env}} + (N-n)Z_{\text{ZV}} + nZ_{\text{VS}}}{Z_{\text{env}} + NZ_{\text{ZV}}} = \frac{Z_{\text{env}} + NZ_{\text{ZV}} + nZ_{\text{VS}}}{Z_{\text{env}} + NZ_{\text{ZV}}} = \frac{Z_{\text{env}} + NZ_{\text{ZV}} + nZ_{\text{VS}}}{Z_{\text{env}} + NZ_{\text{ZV}}},$$

(2)

the approximation being valid when the number of junctions in the voltage state is much less than the total number of junctions in the array.

In the RSJ model for $f \ll f_p$, the impedance of a single junction in the zero-voltage state is inductive, with reactance $X_{\text{LJJ}} = fP_0[(P_c^2 - P)^{-1/2}$. (Here I is the dc bias current.) At $f = 3$ GHz our junctions have $X_{\text{LJJ}} \approx 0.1$ Ω. In the voltage state we model the junctions as resistors with rf resistance $r_{\text{rf}} = \partial V/\partial I$, this being of order 100 Ω. Hence

$$\overline{i_{\text{rf}}}(n) \approx \frac{Z_{\text{env}} + nX_{\text{LJJ}}}{Z_{\text{env}} + nX_{\text{LJJ}}}.$$

(3)

This can be further simplified to give

$$|\overline{i_{\text{rf}}}(n)| \approx \frac{Z_{\text{env}} + nr_{\text{LJJ}}}{\sqrt{Z_{\text{env}} + N^2X_{\text{LJJ}}^2}}$$

(4)

provided that $Z_{\text{env}} + nr_{\text{LJJ}} \gg NX_{\text{LJJ}}$. Given the order of magnitude estimates for N, Z_{env}, r_{LJJ}, and X_{LJJ} in our experiment, this inequality only holds for $n \approx 1$. Plots of $|\overline{i_{\text{rf}}}(n)|$ for any fixed value of i_{rf} should therefore be linear for $n \approx 1$. In Fig. 4(a) we show the dependence upon n of the normalized rf source current $|\overline{i_{\text{rf}}}(n)|$ required to suppress the switching current I_{SW} to a fixed value as indicated. The lines are linear fits to the experimental data in the range $n=1$ to $n=4$. (b) The slope $\partial i_{\text{rf}}(n)/\partial n$ of the linear fits to the plots in (a) as a function of the junction slope resistance $r_{\text{rf}} = \partial V/\partial I$. The line shows the best linear fit being forced to pass through the origin to the data, from which $Z_{\text{env}} = 65 \pm 7$ Ω can be extracted.
nalized rf source current required to suppress the switching current, I_{SW}, to a constant value. Under the assumption that the junctions have identical values of I_C and f_p, the condition that the switching current is constant is equivalent to the rf current, i_{rf}, through the junction array being constant. Hence Eq. (4) should hold, noting also that r_J is constant since the dc bias current is constant. The linearity of these plots for $n \geq 1$ therefore confirms our original assumption that the junctions have mutually identical impedances in the voltage state.

In Fig. 4(b) we plot the slope, $\partial |i_{rf}(n)|/\partial n$, of the plots in Fig. 4(a) as a function of the slope resistance $r_J=\partial V/\partial I$ obtained numerically from the IVCs. As can be seen from Eq. (4), this plot should extrapolate through the origin and have slope equal to $(Z_{env}^2 + N^2 X_{JJ}^2)^{-1/2}$. From Fig. 4(b) we extract $Z_{env}=65 \pm 7 \Omega$, consistent with typical rf line impedances.

In conclusion we have shown that, in spite of each junction in a BSCCO intrinsic Josephson junction array having a different response to rf irradiation, the junctions have identical rf impedances when in the voltage state. This impedance is given by the inverse of the slope of the dc-voltage characteristics. Our measurements were performed at 3 GHz but can in principle be extended into the technologically-important THz regime, this currently being limited only by experimental design. Equation (4) indicates that our technique is least susceptible to error when the junction impedance is of the same order as Z_{env}. If the junction impedance is significantly smaller than Z_{env} (as is the case for the large area intrinsic junctions which have been used in THz emission experiments2,3) then it may be necessary to extend the measurements to higher branch numbers and/or bias at a lower current so that the dependence of the normalized rf current $i_{rf}(n)$ upon junction number n is measurable.

This work is supported by EPSRC under Contract Nos. EP/D029783/1 and EP/G001939/1 and by the Royal Society’s International Joint Projects scheme. J.L. acknowledges the support of the Bayer Science & Education Foundation.

\begin{flushright}